## TENTATIVE DEVICE SPECIFICATION

TYPE:

Commercial No. Development No. SAA 7010 M4290A

D1-6

FUNCTION:

DEMODulator for Compact Disc Digital Audio System (see Appendix I for System Description)

PROCESS:

N-MOS

SUPPLY VOLTAGE:

5V ± 10% 12V ± 10% -2.5V ±0.5V

PACKAGE:

Plastic SOT 117A 28 pin Cerdil SOT 87B



## Pin Configuration:

| Pin | Signal      | Type   | Pin  | Signal       | Type   |
|-----|-------------|--------|------|--------------|--------|
| 1   | VBB         | supply | 15   | VDD2         | Supply |
| 2   | SDATA       | output | 16   | OAl          | input  |
| 3   | SBCL        | output | 17   | 0A2          | input  |
| 4   | SWCL        | output | 18   | OA3          | output |
| 5   | P           | output | - 19 | VSS ANALOGUE | supply |
| 6   | HFD         | input  | 20   | VC01         | input  |
| 7   | HFI -       | input  | 21   | VC02         | output |
| 8   | HFI         | input  | . 22 | CEFM         | output |
| 9   | FB          | output | 23   | FD           | output |
| 10  | FB          | output | 24   | FSDE         | output |
| 11  | DEFM        | output | 25   | SSDE         | output |
| 12  | PD2         | output |      | CLDE         | output |
| 13  | PD1         | output | 27   | DADE         | output |
| 14  | VSS DIGITAL | supply | 28   | VDD1         | supply |

The K4290 Demodulator I.C. forms the frant-ond of the Compact Direc Digital Applio decoding system, supplying demodulated data and timing signals to the Error Corrector M4280 and the subcoding microproce sor.

The detected signal from the disc is amplified and filtered externally and then converted to a digital signal via the level detector. This is an adaptive data slicer which relies on the nature of the modulation system to determine the optimum slicing level.

A frequency detector and a phase detector provide the coarse and fine control signals for the phase locked loop (PLL) system. The gain is supplied by an internal operational amplifier which drives a voltage controlled oscillator (VCO) running at twice the input data rate which is nominally 4.3218MHz. The oscillator output is divided by 2 within the main clock generator which then clocks the input shift register and the timing chain. This clock signal completes the PLL loop when it is compared with the incoming data in the phase detector.

After the phase detector the data is clocked into the 23 bit input shift register to enable the frame sync pattern to be detected. Also, a minimum and maximum data length detector provides frequency limit signals (Tmin and Tmax) for the frequency detector.

The frame sync. signal is used to reset the :588 slave counter which, together with a ±17 symbol rate counter, supplies timing signals for clocking the Eight to Fourteen Modulation (EFM) decoder and the subcoding outputs. The data is read from the input shift register in symbols of 14 bits which are latched and then decoded into 8 bit data words. The subcoding part consists of only one word per frame (see Figure 2), therefore the output (SDATA) is a burst of 8 bits of data accompanied by a 2.1609MHz burst clock signal (SBCL) - see Figure 4. One bit of this subcoding output data is replaced by a subcoding frame sync bit (SF) which is decoded from either of two special EFM codes. The displaced bit is known as the Pause or P bit and is latched to its own output via a debounce circuit to remove erroneous changes.

The \$588 slave counter also provides a sync. coincidence pulse which occurs when two detected sync pulses are precisely one frame length apart (588 clock cycles). This is used by the lock indication counter as an 'in-lock' signal to reset the counter and disable the frequency detector output (FD). If the system goes out of lock for any reason and the sync. pulses cease then the lock indication counter will count frame periods and after 63 frames will enable the frequency detector output.

The sync. coincidence pulse is also used via a delay line to reset the protected :588 master counter. The counter is prevented from accidental reset by erroneous. sync. patterns by accepting only coincident sync. pulses or sync. pulses which occur during a predetermined 'window' at the beginning of each frame. This window is wide enough to allow for PLL bit slips, but narrow enough to avoid false sync. signals generated by corrupt data.

The \*588 master counter, together with a second \*17 symbol rate counter, is used to time the data and clock signals to ERCO (see Figure 3). In this way, even if the data has been corrupted, the timing signals are correct and only re-synchronised after a complete frame has been sent to the Error Corrector.

| STRICTLY<br>OR ISSUE 1 | between each sym                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | ng the frame sync. | period.  | It is    |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------|----------|----------|
| RES                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FUNCTION:                 | COMM: SAA 7010     | DATE     | 08.03.82 |
| ERVED                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Compact Disc Demodulator  | EXP: M4290 A       | 16.11.81 | 13.7.82  |
| RD                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ISSUED BY: D. Braithwaite | 2 SH SH 19         | 3.2.82   | 14.4.83  |
| THE REAL PROPERTY.     | AND DESCRIPTION OF THE PERSON | D. Braithwaite            | 2 30 30 19         |          |          |

Bram Jacobse Tinkering CD Players & Digital Audio ULLARD LIMITED

REPRODUCTION

| 1    | PHE DESC | RITTION |            |                                                     |                                                                                                       |                          |             |
|------|----------|---------|------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------|-------------|
| -    | Pin No.  | Name :  |            | D.                                                  | e eristion                                                                                            |                          |             |
|      | 1        | VBB     |            | -2.5V. Back Bis                                     | as Supply!                                                                                            |                          |             |
|      | 2        | SDAT    | <b>A</b>   | burst of data                                       | ut for subcoding da<br>(including a 1 bit<br>t serially once per<br>Figure 4)                         | subcoding                | frame       |
|      | 3        | SBCL.   |            | burst clock at                                      | ut for subcoding bi<br>nominally 2.1609M<br>subcoding data (se                                        | Iz which i               | s used to   |
|      | 4        | SWCL    |            | square wave sigused to synchro                      | ut for subcoding wo<br>gnal at data frame<br>onise the subcoding<br>(see Figure 4)                    | rate (7.3                | 5KHz)       |
|      | 5        | P       | . *        | This signal is<br>word and is use<br>debounce circu | ut for the subcoding<br>derived from the end to indicate a mu<br>it is incorporated<br>(see Figure 4) | encoded su<br>usic pause | bcoding . A |
|      | 6.       | HFD     | •          | When this signs                                     | ernal High Frequenc<br>al is high the freq<br>d phase detector ar                                     | uency dete               | ector       |
|      |          |         |            |                                                     |                                                                                                       |                          |             |
|      | 7        | HFI     |            | A differential<br>peak-peak is re                   | input to the Level signal of between equired between pirctor correctly.                               | 0.5V and                 | 2.5V        |
|      | 8        | HFI     |            | Inverting input                                     | t to the Level Dete                                                                                   | ector.                   |             |
|      | . 9      | FB      |            | These outputs                                       | ack output from the $(FB \text{ and } FB)$ have a ll default to $\frac{1}{2}$ VDI                     | nominal i                | mpedance    |
|      | 10       | FB      |            | Non-inverted fe<br>Detector (see I                  | eedback output from                                                                                   | the Leve                 | 1           |
|      | 11       | DEFM    |            | Push-pull outputhrough the lev                      | nt for EFM data aft                                                                                   | er it has                | passed      |
|      |          |         | FUNCTION:  |                                                     | COMM: SAA 7010                                                                                        | DATE                     | 13.7.82     |
|      |          |         |            | sc Demodulator                                      | EXP: M4290A                                                                                           | 3.2.82                   | 14.4.83     |
| 5550 |          |         | ISSUED BY: | D. Braithwaite                                      | 3 SH SH 19                                                                                            | 1                        |             |

Bram Jacobse Tinkering CD Players & Digital A

REPRODUCTION OR ISSUE TO THIRD

| Pin No.       | Name .  | <u>Description</u>                                                                                                                                                                                                                  |
|---------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12            | FD2     | . Phase detector refers se signal.<br>(see PD1)                                                                                                                                                                                     |
| 13            | PD1     | Phase detector output signal.  These outputs (PD1 and PD2) have a nominal impedance of 10 K Qand the differential dc content of the signals is a measure of the phase difference between the data and the internal 4.3218MHz clock. |
| 14            | VSSD    | Digital Ground. Main ground terminal                                                                                                                                                                                                |
| 15            | VDD2    | +12V supply.                                                                                                                                                                                                                        |
| 16            | OAl     | Non-inverting input to the Operational Amplifier.                                                                                                                                                                                   |
| 17            | 0A2     | Inverting input to the Operational Amplifier.                                                                                                                                                                                       |
| 18            | 0A3     | Source follower output of Operational Amplifier.                                                                                                                                                                                    |
| 19            | ·VSSA   | Analogue Ground. Ground terminal for Operational Amplifier only. Connected internally to VSSD via a nominal 25 $\Omega$ resistor.                                                                                                   |
| 20            | VCO1    | Input to Voltage Controlled Oscillator amplifier. The amplifier is a simple inverter designed for up to 10MHz operation. The frequency control is achieved via an external 'Varicap' tuned circuit.                                 |
| 21            | VC02    | Output from Voltage Controlled Oscillator amplifier. The load for the inverting transistor may be turned off for test purposes by reducing VDD2 to OV.                                                                              |
| 22            | CEFM    | A push-pull output from the internal 4.3218MHz clock generator.                                                                                                                                                                     |
| 1.            |         |                                                                                                                                                                                                                                     |
| 23            | FD      | Three state push-pull output from the Frequency Detector. This output has a nominal IKQ impedance when active but assumes a high impedance state once the system is in lock.                                                        |
| 24            | FSDE    | Push-pull output for Frame Sync signal to ERCO. A                                                                                                                                                                                   |
|               | 1000    | positive going pulse occurring at the end of each data frame (nominal frequency 7.35KHz). (See Figure 3)                                                                                                                            |
| 25            | SSDE    | Push-pull output for Symbol Sync. signal to ERCO. A negative going pulse occuring during the last bit of each data symbol (nominal frequency 254KHz) (See Figure 3)                                                                 |
|               |         |                                                                                                                                                                                                                                     |
|               | FUNCTIO | ON:   COMM: SAA 7010   DATE   3.2.82                                                                                                                                                                                                |
|               | Compac  | t Disc Demodulator                                                                                                                                                                                                                  |
|               | Tgensh  | M4290A 16.11.81 08.03.82                                                                                                                                                                                                            |
| Jacobso Turno | NO SUED | BY: D. Braithwaite 4 SH SH19 13.7.82 14.4.83                                                                                                                                                                                        |

ISSUED BY: D. Braithwaite Bram Jacobse Tinkering CD Players & Digital Audio JLLARD LIMITED SOUTHAMPTON

EXP: M4290 A SH SH19

ALL RIGHTS STRICTLY RESERVED

|                                                             | Pin No.                | Mane                     | Description                                                                                                                                            |   |
|-------------------------------------------------------------|------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                                             | 26                     | CHES                     | Push-jull output for Data bit clock to EECO.  An 8 bit burst clock at nominally 2.1609XHz which is used to synchronise the data to EECO (see Figur 3). | е |
|                                                             | 27                     | DADE                     | Push-pull output for Data to ERCO. Serial data consisting of 32 x 8 bit symbols per frame which is synchronised to CLDE. (See Figure 3)                |   |
|                                                             | 28                     | VDD1                     | +5V Supply.                                                                                                                                            |   |
|                                                             |                        |                          |                                                                                                                                                        |   |
|                                                             |                        |                          |                                                                                                                                                        |   |
|                                                             |                        |                          |                                                                                                                                                        |   |
|                                                             |                        |                          |                                                                                                                                                        |   |
| -                                                           |                        |                          |                                                                                                                                                        |   |
|                                                             |                        |                          |                                                                                                                                                        |   |
|                                                             |                        |                          |                                                                                                                                                        |   |
|                                                             |                        |                          |                                                                                                                                                        |   |
|                                                             | 1                      |                          |                                                                                                                                                        |   |
|                                                             | . (                    |                          |                                                                                                                                                        |   |
|                                                             |                        |                          |                                                                                                                                                        |   |
|                                                             |                        |                          |                                                                                                                                                        |   |
|                                                             |                        |                          |                                                                                                                                                        |   |
|                                                             | + 1. F                 |                          |                                                                                                                                                        |   |
|                                                             |                        |                          |                                                                                                                                                        |   |
|                                                             |                        |                          |                                                                                                                                                        |   |
|                                                             |                        |                          |                                                                                                                                                        | - |
| -                                                           |                        |                          |                                                                                                                                                        |   |
| ALL                                                         |                        | , t                      |                                                                                                                                                        |   |
| ALL RIGHTS STRICTLY RESERVED REPRODUCTION OR ISSUE TO THIRD |                        |                          |                                                                                                                                                        |   |
| ON O                                                        |                        |                          |                                                                                                                                                        |   |
| TRICTI                                                      | 1.00                   | :                        |                                                                                                                                                        |   |
| LY                                                          |                        |                          |                                                                                                                                                        |   |
| RES                                                         |                        | FUNCT                    | 08.03.8                                                                                                                                                | 2 |
| HYE                                                         |                        | Compa                    | act Disc Demodulator EXP: MA2004 13.7.8                                                                                                                |   |
| Bran                                                        | n Jacobse Tinkering CD | Players & Diolel Audio   | D BY: 16.11.81 114.4.83                                                                                                                                |   |
| 240                                                         | ENS SIT PERSON         | Train Sec Second T T A T | מה דדודתם ממוחיו והשתיין וה                                                                                                                            |   |

|                            | Electrical Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                    |             | Talbe    |         |         |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------|-------------|----------|---------|---------|
|                            | Abrolute Estings (VSSA = VSSD = //V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | Synd ol            | nin         | typ      | E SERVE |         |
|                            | Operating ambient temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | Tamb               | -20         |          | +70     | °c      |
|                            | Storage temperature<br>Back Bias Supply Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Tstg<br>VBB        | -55<br>-4.0 |          | +125    | °C<br>V |
|                            | Supply Voltage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | V <sub>DD1</sub>   | -0.3        |          | +7.5    | v       |
|                            | Supply Voltage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | , A <sup>DD5</sup> | -0.3        |          | +15     | V       |
|                            | Input Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | V max              | -0.3        |          | +7.5    | V       |
|                            | Output Voltage (except FD, OA3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | '      | V <sub>O</sub> max | -0.3        |          | +7.5    | V       |
|                            | Output Voltage (FD, OA3 only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | VO(FD,OA3) ma      | x -0.3      |          | +15     | V       |
|                            | Output current (each output)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | Io max             |             |          | 10      | mA      |
| 7                          | Electrostatic handling<br>(equivalent to discharging a 250pF<br>capacitor through a ΙΚΩ series<br>resistor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | VUS                | -1000       |          | +1000   | ٧       |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | -                  |             |          |         |         |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                    |             |          |         |         |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                    |             |          |         |         |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                    |             |          |         |         |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                    |             |          |         |         |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                    |             |          |         |         |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                    |             |          |         |         |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | -                  |             |          |         |         |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                    |             |          |         |         |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                    |             |          |         |         |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                    |             |          |         |         |
| 190                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                    |             |          |         |         |
| ALL<br>REPR                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                    |             | ,        |         |         |
| ALL RIGHTS<br>REPRODUCTION |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                    |             |          |         |         |
| NO!                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                    |             |          |         |         |
| STRICTLY<br>OR ISSUI       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                    |             |          |         |         |
| - 1                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                    |             |          |         |         |
| 10 1                       | FUNCTION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | COMM: SAA 70       | 10 D        | ATE      | 23.2    |         |
| W                          | Compact Disc Demod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ulator | EXP: M4290         |             | 16.11    | .8108.0 | 3.82    |
| Bra                        | m Jacobse Tokering CD Players & Digital Audio SSUED BY: D. Brait                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 6 SH SH            | 70          | 3.2.82   |         | 1.82    |
| NA.                        | Didition of the state of the st |        | 1 0 -1             | 20 1        | 11.11.83 |         |         |

|                                              | Electrical Characteristics                                                                                                                                                                                                                                                                                                   |            |                                                  |        |                     | nlue                              |                                          |                                     |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------|--------|---------------------|-----------------------------------|------------------------------------------|-------------------------------------|
|                                              | Operating                                                                                                                                                                                                                                                                                                                    | 2.1.3      | 1                                                | .1     |                     | tra                               | l x                                      |                                     |
|                                              | The following applies for  Tamb = -20°C to +70°C and VSSA = VSSD =  Ovoit  Back Bias Supply Voltage Supply Voltage 1  Supply Voltage 2  Supply Current 1  Supply Current 2  Back Bias Supply Current  Total Power Dissipation  The following applies for:  Tamb = -20°C to +70°C  VDD1 = 4.5V to 5.5V  VDD2 = 10.8V to 13.2V |            | VEB<br>VDD1<br>VDD2<br>IDD1<br>IDD2<br>IEB<br>PD |        | -3.0<br>4.5<br>10.8 | -2.5<br>5.0<br>12.0<br>tbn<br>tbn | -2.0<br>5.5<br>13.2<br>150<br>21<br>-500 | V<br>V<br>V<br>mA<br>mA<br>pA<br>mW |
|                                              | VSSA = VSSD = ØV VBB = -2.0V to -3.0V unless otherwise stated INPUT: HFD/ Input voltage low Input voltage high                                                                                                                                                                                                               |            | AIT<br>AIT                                       |        | -0.3<br>2.4         | _                                 | 0.8                                      | V<br>V                              |
|                                              | Input current Input capacitance OUTPUTS: DADS/DEFM, CLDE, FSDE, SSDE, SBCL, SDATA, P, SWCL, CEFM                                                                                                                                                                                                                             | (1)<br>(2) | I <sub>IN</sub><br>C <sub>IN</sub>               |        | -1                  |                                   | +1<br>7                                  | μ <b>A</b><br>pF                    |
|                                              | Output Voltage low at $I_{\rm OL} = -1.6 {\rm mA}$                                                                                                                                                                                                                                                                           |            | A <sup>OL</sup>                                  |        | 0                   |                                   | 0.4                                      | V                                   |
|                                              | Output Voltage high at IOH = 0.2mA                                                                                                                                                                                                                                                                                           |            | VOH                                              |        | 3.0                 |                                   | VDD1<br>+0.5                             | v                                   |
|                                              | Load Capacitance                                                                                                                                                                                                                                                                                                             |            | CL                                               |        |                     |                                   | 150                                      | pF                                  |
|                                              | OUTPUT: FD                                                                                                                                                                                                                                                                                                                   |            |                                                  |        |                     |                                   |                                          |                                     |
|                                              | Output Voltage low at $I_{\rm OL}$ = -100 $\mu A$                                                                                                                                                                                                                                                                            |            | A <sup>OT</sup>                                  |        | 0                   |                                   | 0.5                                      | V                                   |
|                                              | Output Voltage high at $I_{OH}$ = 100 $\mu$ A                                                                                                                                                                                                                                                                                |            | A <sup>OH</sup>                                  |        | 8                   |                                   | VDD2<br>+0.5                             | ٧                                   |
|                                              | Output leakage current for $V_0 = 0 - 6V$                                                                                                                                                                                                                                                                                    | (3)        | ILE                                              |        | -1                  |                                   | +1                                       | μА                                  |
| ALL                                          | Output Impedance                                                                                                                                                                                                                                                                                                             |            | Ξ0                                               |        |                     | 1                                 |                                          | KΩ                                  |
| ALL RIGHTS STRICTLY<br>REPRODUCTION OR ISSUE |                                                                                                                                                                                                                                                                                                                              |            |                                                  |        |                     |                                   |                                          |                                     |
| RESERVE                                      | FUNCTION: Compact Disc Demod                                                                                                                                                                                                                                                                                                 | ulator     | COMM:                                            | SAA 70 | -                   | ATE                               | 3.2                                      | .82                                 |
|                                              | cellab by b B                                                                                                                                                                                                                                                                                                                |            | EXP:                                             | M429 0 |                     | 16.11.                            | 81 08.                                   | 4.83                                |
| Bram                                         | Jacobse Tinkering CD Payers & Digital Audio                                                                                                                                                                                                                                                                                  | 1m11111mm  | ^                                                |        | 19                  | 13. 1.1                           | 14.                                      | 7.03                                |

|                            | Electrical Characteristics                                                   |              |                                  |      | nlue           |      |               |
|----------------------------|------------------------------------------------------------------------------|--------------|----------------------------------|------|----------------|------|---------------|
|                            | Open metabot                                                                 | 7. 10.2      | Open of                          | n'n  | 122            | x    |               |
|                            | - H                                                                          |              |                                  |      |                |      |               |
|                            | OUTPUTS: PD1, PD2 (see figure 8)                                             |              |                                  |      |                |      |               |
|                            | Output Impedance                                                             |              | 20                               |      | 15             |      | HΩ            |
|                            | Output Impedance matching                                                    |              | 3 <sub>01-</sub> 2 <sub>02</sub> |      |                | +10  | 50            |
|                            |                                                                              |              | 2 <sub>01+</sub> 2 <sub>02</sub> |      |                |      |               |
|                            | Phase Detector control range                                                 |              | 0e                               | -2.1 |                | +2.1 | rad           |
|                            | Phase Detector gain factor                                                   | (15)         | Kd                               |      | 0.1            | 6    | V/ra          |
|                            | Common mode output voltage                                                   | (15)         | Vdcm                             |      | 4              |      | ٧             |
|                            |                                                                              |              |                                  |      |                |      |               |
|                            |                                                                              |              |                                  |      |                |      |               |
|                            | ANALOGUE CIRCUIT CHARACTERISTICS Input Level Detector                        |              |                                  |      |                |      |               |
|                            | INPUTS: HFI, HFI                                                             |              |                                  |      |                |      |               |
|                            | Input voltage range (AC)                                                     |              | V <sub>TAC</sub>                 | 1.0  |                | 2.5  | Vp-p          |
|                            | Input Offset voltage                                                         |              | VIOF                             | -25  |                | +25  | mV            |
|                            | Input current                                                                | (1)          | IIN                              | -1   |                | +1   | μА            |
|                            | Input offset current                                                         | (4)          | I <sub>IDF</sub>                 | -0.2 |                | +0.2 | μА            |
|                            | Input capacitance                                                            |              | CIN                              |      |                | 7.   | pF            |
|                            | Common mode input voltage range                                              |              | VICM                             | the  | Vbbs           | the  | V             |
|                            |                                                                              |              |                                  |      |                |      |               |
|                            | OUTPUTS: FB, FB                                                              |              |                                  |      |                |      |               |
|                            | Output impedance                                                             |              | ₹0                               |      | 10             |      | ΚΩ            |
|                            | Small signal gain at 500KHz (C <sub>1</sub> =5pf)                            |              | A▼                               | 60   |                |      | V/V           |
|                            | Output voltage high                                                          | (16)         | Voh                              | 4    |                |      | V             |
|                            | Output voltage low                                                           | (17)         | Vol                              |      |                | 1    | V             |
|                            | Feedback voltage with respect to 1 VDD1 (VDD1 = 5v, VDD2 = 12v, Tamb = 25°C) | (19)         | Vfb                              | -70  |                | -170 | mV            |
| ?                          |                                                                              |              |                                  |      |                | -110 |               |
|                            |                                                                              |              |                                  |      |                |      |               |
| . = >                      | PLL FILTER OP AMP                                                            | (5)          |                                  |      |                |      |               |
| ALL RIGHTS<br>REPRODUCTION |                                                                              |              |                                  |      |                |      |               |
| RIGH                       | INPUTS: OA1, OA2 Common-mode voltage range                                   |              | VICM                             | 1.5  |                | 6    | V             |
| NOI                        | Input offset voltage                                                         |              | VIOF .                           | -30  |                | +30  | mV            |
|                            | Input current                                                                | (1)          | IIN                              | -1   |                | +1   | μА            |
| STRICTLY<br>OR ISSUE       | Input offset current                                                         | (4)          | I <sub>IOF</sub>                 | -0.1 |                | +0.1 | μА            |
| -                          | INDIAMENT                                                                    |              |                                  |      | A CONTRACT     | 107  | 2 00          |
| RESERVI                    | FUNCTION:                                                                    | .7           | COMM: SAA 701                    | -    | ATE<br>16.11.8 |      | 2.82<br>03.82 |
| × 0.0                      | Compact Disc Demodu                                                          |              | EXP: M4250 A                     |      | 3.2.82         | 113. | 1.82          |
| Brai                       | n Jacobse Trikering CD Players & Digital Audio                               | IIMII I IIDM | 8 0 0                            | 19   | 14.4.8         | )    |               |
|                            |                                                                              |              |                                  |      |                |      |               |

|                                            | Election 1 When teristics                             |           |                 |      | . 1 ie  |              |                |
|--------------------------------------------|-------------------------------------------------------|-----------|-----------------|------|---------|--------------|----------------|
|                                            | Operating                                             | in this   | 0,101_          | n in |         |              |                |
|                                            | Input capacitance                                     |           | clN             |      |         | 7            | p.F            |
|                                            | CMR ratio                                             |           | . 11            | 40   |         |              | dВ             |
|                                            | Open loop gain (DC)                                   |           |                 | 40   |         |              | 63             |
|                                            | Gain Bandwidth product (20dB/decade roll off)         |           |                 | 1    | 5       |              | MHz            |
|                                            | OUTPUT: OA3                                           |           |                 |      |         |              |                |
|                                            | Output voltage low at IOL = -lmA                      |           | VOL             | 0    |         | 1            | Λ              |
|                                            | Output voltage high at IOH = lmA                      |           | v <sub>ОН</sub> | 8    |         | VDD2<br>+0.5 | V              |
|                                            | VCO AMPLIFIER VCO1, VCO2                              |           |                 |      |         |              |                |
|                                            | Mutual conductance at 100KHz                          | ) See     | gm              | 1.5  |         |              | mA/V           |
|                                            | Bandwidth (-3dB cut off frequency)                    | } Fig 9   | Bgm             | 20   |         |              | MHz            |
|                                            | Input capacitance                                     |           | CIN             |      |         | 7            | pF             |
|                                            | Output capacitance                                    |           | COUT            |      |         | 7            | pF             |
|                                            | Feedback capacitance                                  |           | CFB             |      |         | 5            | pF             |
|                                            | Input leakage                                         | (1)       | IIN             | -1   |         | +1           | μА             |
|                                            | Output current (at 10MHz)                             |           | Iout            | -1   |         | +1           | mA             |
|                                            | Small signal voltage gain at 100KHz                   | See       | A <sub>V</sub>  | 4    |         |              | V/V            |
|                                            | TIMING                                                | Fig 9     | V               |      | 1       |              |                |
|                                            | Operating frequency (except VCO)                      |           | Fcefm           | 0.1  |         | 5            | MHz            |
|                                            | Operating frequency (VCO only)                        |           | Fvco            | 0.2  |         | 10           | MHz            |
|                                            | OUTPUTS: CLDE, DADE , SSDE, FSDE, CEFM (see Figure 5) | (6,12)    |                 |      |         |              |                |
|                                            | Output rise time                                      |           | toR             |      |         | 50           | ns             |
|                                            | Output fall time                                      |           | toF             |      |         | 40           | ns             |
|                                            | CLDE period                                           |           | tocp            | 400  |         |              | ns             |
|                                            | CLDE high time                                        |           | toch            | 150  | 1       |              | ns             |
|                                            | CLDE low time                                         |           | tocL            | 150  |         |              | ns             |
| 252                                        | DADE/SSDE/FSDE to CLDE set up                         |           | tods            | 100  |         |              | ns             |
| RODU                                       | CLDE to DADE/SSDE/FSDE hold                           |           | toDH            | 100  |         |              | ns             |
| ALL RIGHTS<br>REPRODUCTION<br>PARTIES IN A | SSDE low time                                         | (7)       | tssl            |      | 3       | -            | CEFM<br>period |
| N OR                                       | CLDE low time during FSDE                             | (8)       | tocc            | 16   | 46      |              | CEFM           |
| ICTLY<br>ISSUE<br>FORM                     | CLDE to CEFM set up                                   |           | ODSE            | 10   | 100     |              | perio          |
| - 1                                        | CEFM to CLDE hold                                     |           | tODHE           |      | 100     |              | nsec.          |
| TOS                                        | FUNCTION:                                             |           | COMM: SAA 701   | 0    | DATE    | 23.2         |                |
| RESERVE                                    | Compact Disc Demode                                   | ulator    | EXP: M4290      |      | 3.2.82  | _            | 7.87           |
| × 0 0                                      | Jacobse Tinkering CD Players & Digital Audio          |           | 9 SH SH         | 19   | 14.4.83 |              |                |
| 27 (0)                                     | MITTADD TIMETOD CO                                    | TIMEAMORE | ) NI            |      |         |              |                |

|                            | Electrical Characteri ics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |             | 1    | Tidae          |       |          |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|------|----------------|-------|----------|
|                            | Operating - timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | neter   | .priol      | l in | Typ.           | # 1 X |          |
|                            | OUTPUTS: SECL, SDATA, P, SWCL (see Figure 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (12,43, |             |      |                |       |          |
|                            | Output rise time (SBCL, SDATA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (6)     | ton         |      |                | 50    | ns       |
|                            | Output fall time (SBCL, SDATA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (6)     | tor         |      |                | 40    | ns       |
|                            | Output rise time (P, SWCL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (9)     | tosr        | -    |                | 200   | ns       |
|                            | Output fall time (P, SWCL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (9)     | tosf        |      |                | 200   | ns       |
|                            | SBCL high time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | toch        | 150  |                |       | ns       |
|                            | SBCL low time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | toch        | 150  |                |       | ns       |
|                            | SDATA to SBCL set up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | tops        | 100  |                |       | ns       |
|                            | P to SWCL set up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | tods        | 1    |                |       | μS       |
|                            | SBCL to SDATA hold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | todh        | 100  |                |       | ns       |
| 4,-                        | SBCL to SWCL hold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | tswh        | 0    |                | 500   | ns       |
|                            | SWCL Duty cycle (thigh/tperiod)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | OWIL        | 40   | 50             | 60    | %        |
|                            | nigh period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |             |      |                |       |          |
|                            | OUTPUT: FD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (12)    |             |      |                |       |          |
|                            | Output rise time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (6)     | tFDR        |      |                | 1     |          |
|                            | Output fall time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (6)     |             |      |                | 1     | µs<br>µs |
|                            | Table 1111 vinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (6)     | tFDF        |      |                |       | μδ       |
|                            | OUTPUTS: DEFM, CEFM (see Figure 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (6,12)  |             |      |                |       |          |
|                            | Output rise time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | tor         |      |                | 50    | ns       |
|                            | Output fall time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 15    | tor         |      |                | 40    | ns       |
|                            | DEFM to CEFM set up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (18)    | tops        | 50   |                |       | ns       |
|                            | CEFM to DEFM hold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (18)    | tcDH        | 70   |                |       | ns       |
| (                          | CEFM high time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | toch        | 50   | -              |       | ns       |
|                            | CEFM low time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | tocL        | 50   |                |       | ns       |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |      |                |       |          |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |      |                | -     |          |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |      |                |       |          |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |      |                |       |          |
| ==                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |      |                |       |          |
| ALL RIGHTS<br>REPRODUCTION |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |      |                |       |          |
| 1100                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |      |                |       |          |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |      |                |       |          |
| 2 5                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |      |                |       |          |
| STRICTLY<br>OR ISSUE       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |      |                |       |          |
| -                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |      |                |       |          |
| RESERVE<br>TO THIS         | FUNCTION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | COMM: SAA 7 | _    | ATE<br>16.11.8 | 23.2  |          |
| HIN                        | Compact Disc Demod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lulator | EXP: M4290  | A    | 3.2.82         | 13.   | 1.82     |
| Bran                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | thwaite | 10 SH SH    | 19   | 14.4.83        | 3.    |          |
| Per al Si                  | The state of the s |         |             |      |                |       |          |

- Phort circuit protected to VED1 and VSS. The maximum load capacitonce that can be applied before short circuit protection becomes operative is 150pF.
- 3. output in high impedance state 25°C.
- 4. 25°C
- 5. all tests done within common mode voltage range
- 6. output loading 50pF
- 7. SSDE reamins low for only one negative edge of CLDE
- 8. excessive bit-slip may cause gap to disappear
- 9. output loading 150pF
- 10. the SYNC bit is low when a subcoding sync word is detected.
- 11. CLDE remains low when FSDE is high
- 12. reference levels are 0.8V and 2.4V
- 13. output loading 50pF for SBCL and SDATA, and 150pF for SWCL and P
- 14. SWCL has a 50% duty cycle.
- 15. Average data run length = 5x CEFM periods
- 16. 100k2 connected between output and VSS, VDD1 = 5V
- 17. 100KΩ connected between output and VDD1, VDD1 = 5V
- 18. Free running VCO frequency tunned to nominal & PLL in lock with a typical application circuit is shown in Figure 1.
- 19. Measured with Viac = 1v p-p undistorted EFM signal

REPRODUCTION OR ISSUE TO

FUNCTION: COMM: SAA 7010 DATE 23.2.82 THIRD Compact Disc Demodulator 3.2.82 08.03.82 EXP: M4290A 13.7.82 ISSUED BY: D. Braithwaite SHISH 19 11 Bram Jacobse To ULLARD LIMITED SOUTHAMPTON















RIPRODUCTION OR ISSUE TO THIRD

SH SH 19

14.4.83

MULLARD LIMITED SOUTHAMPTON



S<sub>1</sub> closed to measure gm

$$gm = \frac{Io}{Vi} = \frac{10xVo}{Vi}$$
 mA/V

Figure 9. Measurement circuit for VCO voltage gain and gm

FUNCTION: Compact
Disc Demodulator
EXP: M4290 A

SAA7010

Bram Jacobse Namowico Papara & Commanda Date

ULLARD LIMITED SOUTHAMPPON

ULLARD LIMITED SOUTHAMPPON

ULLARD LIMITED SOUTHAMPPON

Simplified Block Diagram for the Compact Disc Digital Audio System



## SYSTEM DESCRIPTION

The information contained in the pit structures on the disc is converted to a coded input signal via the Optical Pick-up Unit. This signal is amplified and filtered to remove the low frequency tracking information and to equalise the frequency response.

The M4290 DEMOD re-generates the data rate bit clock and timing signals from the H.F. input signal. This EFM modulated signal is decoded into a N.R.Z. form and the subcoding data extracted and fed to the external Subcoding Microprocessor. The decoded 8 bit data symbols are fed serially into the Error Corrector I.C. together with timing signals.

|   | *                                |       |                  |  |
|---|----------------------------------|-------|------------------|--|
|   |                                  |       |                  |  |
| T | FUNCTION:                        | COM4: | IDATE I          |  |
|   | FUNCTION:<br>Compact Disc System | COM:  | DATE<br>19.11.81 |  |

The MAZEO DECO corrects up to two erroneous symbols per frame in the data received from DENOD. The necessary de-interlessing to obtain the required data format is achieved by writing out the data in 8 bit parallel symbols to an external RAM and then reading it back in a defined sequence. After all possible corrections have been made the data is fed out of ERCO in a 16 bit serial format. A further function of ERCO is to re-synchronise the data to a steady 2.1162Hz clock rate derived from a 4.2356MHz crystal oscillator on the CIM I.C. This removes any jitter from the data while further operations eliminate wow and flutter plus any F.M. content in the data signal. If the ERCO is unable to correct error bits then the uncorrected data is passed to CIM together with an Unreliable Data warning signal.

The M4300 CIM accepts the 16 bit serial data and acts in such a way that, if the Unreliable Data signal is received, the effect of the errors is minimised. If the error results in a single unreliable sample then this is interpolated by replacing it by a new sample whose value is calculated from the values of the good sample immediately preceding it and that succeeding it. If a string of unreliable samples is received then the output is muted by replacing unreliable samples with zero value samples and reducing the value of the thirty samples preceeding and succeeding them to smooth out the effects of the transition. The output of CIM is split into fourteen or sixteen bit stereo left or right data in Offset Binary or Twos Compliment format.

The M4550 FIL is a digital interpolating filter which improves the signal to noise ratio. It also enables a simpler analogue filter to be used after the Digital to Analogue Converter (DAC). The M4550 is a low pass digital transversal filter with 96 taps. The stereo output is organised in serial fourteen bit samples with the M.S.B. first. It is switchable between Offset Binary and Twos Compliment code. The output sample frequency is 176.4KHz which is four time the input sampling frequency.

PUNCTION: COMM: DATE
Compact Disc System EXP: 19.11.81

INSUED BY: D. Noble 2 SH Sh 2

RIGHTS

STRICTLY

## EFM Encoding System

The Eight to Fourteen Modulation (EFM) code used in the Compact Disc Digital Audio system is designed to restrict the bandwidth of the data on the disc and present a d.c. free signal signal to the demodulator. The actual number of bits per symbol is 17 which includes 3 merging bits which also help to remove the d.c. content.

Table 1 shows the conversion from 8 bit NRZ symbols to the equivalent 14 bit symbols. The 14 bit symbols are given in NRZ-I representation in which a 1 means a transistion at the beginning of that bit from high-low or low to high i.e.



Cl is the first bit of the 14 bit symbol read from the disc and Dl is the Most Significant Bit (MSB) of data which appears first at the DADE output from DEMOD.

The codes shown in Table 1 cover the normal 256 possibilities for an 8 bit data word. However, there are several other combinations of 14 bit codes which, although they obey the EFM rules for maximum and minimum run length, will produce unspecified output data symbols. Two of these extra codes are used in the subcoding data to define a subcoding frame sync.

These are:-

ALL RIGHTS

When a subcoding frame sync is detected the P bit of the data is ignored by the debounce circuitry. The remaining bits Q - W are not specified in the system but will always be as shown from this device.

FUNCTION:

Compact Disc Demodulator

EXP: M4290

SSUED BY: D. Braithwaite

III.APD LIMITED SOUTHAMPOON

III.APD LIMITED SOUTHAMPOON