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INTRODUCTION

The possible application of d i g i t a l signal processing in the
audio fi e l d has been known and studied f o r many years: the
fi r s t theoretical description of pulse-code modulation in te ‑
lephony actual ly was wri t ten more than 40 years ago!

For application of PCM in High-Fi and professional audio how‑
ever, even today weare not so f a r from the l im i t s o f what i s
technologically possible. Therefore, only r e l a t i ve l y recent‑
l y , it has become possible to develop commercially viable d i ‑
g i t a l audio products.
As a consequence, only a small group of high-level special‑
i s ts are nowadays fami l iar with the theory and applications
of d i g i t a l audio technology.

This booklet is intended as a way to fami l iar ize a newcomer
in the fi e l d with some of the theoretical and technological
aspects of PCM‐audio, in the simplest possible way. We hope
i t w i l l encourage towards fur ther studies in t h i s in te res t ing
fie l d .

SONY SERVICE CENTRE (Europe) N.V.
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P A R T  I

ANALOG-TO-DIGITAL CONVERSION

I .  O U T L I N E

An analog signal, be it audio or any o t h e r, has to be converted to a d i g i t a l

signal before it can be d i g i t a l l y processed. A l though the pr incip les of

A/D- and D/A-conversion may seem r e l a t i v e l y s imple, in f a c t , t h i s

conversion between the analog and the d i g i t a l domain i s , techno log ica l l y

speaking very d i f fi c u l t and w i l l unavoidably cause degradat ion of the

or ig ina l s ignal . Consequently, most of the t ime th is stage wi l l be the

l i m i t i n g f a c t o r that determines system per formance.

Conversion from the analog to the d i g i t a l domain is done in several s teps,

which however are not always c lear ly defined :

-  fi l t e r i n g

-  s a m p l i n g

-  q u a n t i z a t i o n

-  c o d i n g .

(see F i g . 1-1 . )
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Fig. 1-2. Two examples of sine waves together with the i r sampled versions
( f s = 44.056kHz)

(a)1kHz sine wave
(b)10kHz sine wave

Although sampling in (b) seems much coarser than in (a ) , in both
cases rest i tu t ion of the or ig ina l signal is per fect ly possible.
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Below, w e wi l l expla in and discuss these basic steps o f analog- t o - d i g i t a l

conversion, along with the signal degradations tha t each conversion

block is l i k e l y to in t roduce.
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I I . SAMPLING

1. Pr inciple - The Nyquist Theorem

By defin i t i on , an audio signal varies cont inuously in t ime . To enable i t

to be converted i n t o a d i g i t a l s ignal , it is necessary t ha t the signal is

fi r s t sampled, i . e . at certain points in t ime a sample must be taken of t he

i n pu t value, which subsequently can be converted. The fixed t i m e

Although the sampl ing operat ion may seem to introduce a ra the r drast ic

modificat ion of the i npu t signal, (since it ignores a l l the signal changes

tha t occur between the sampl ing t imes) , i t can be shown t ha t t h e

t ha t is present in the i npu t s ignal .

This is the famous Nyquist cr i ter ion on sampling (also called Shannon

cr i te r ion or Shannon theorem).

The correctness of the Nyquist c r i te r ion can be understood when we

consider the spectra of the i n pu t and output signals (Fig. 1 -4 . ) .
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I f we consider an inpu t signal i n ) which has a maximum frequency fmax:
i t s spectrum may have any form between 0 Hz and fmax (1 ) ; the sampl ing

s ignal 5 “ ) , having a fixed frequency fs, can be represented by one single

l ine a t f 5 (2) . The sampling process i s equivalent t o a mu l t i p l i c a t i on o f

i n ) and 5( t ) ’ and the spect rum of the output s igna l , as shown in (3 ) , can

be seen to contain the same spectrum as the inpu t s igna l , t oge the r wi th

r epe t i t i o n o f the same spec t rum, modulated around mult ip les o f the

sampling frequency.

As a consequence, proper low-pass fi l t e r i n g can completely i so la te and

thus comple te ly recover the inpu t s igna l .

From F ig . 1 -4 . , it can also easi ly be understood tha t fs must be g r ea t e r

than 2x fmax- I f th is would not be the case, the or ig ina l spectrum would

over lap with the modulated pa r t of the spec t rum, and consequently be

inseparable f rom it (Fig. 1-5. )

Fo r example, a 20kHz-signal sampled at 35kHz would produce a 5kHz

difference f requency. This phenomenon is known as aLiasing and must

be avoided by a l l means.

Fo r th i s reason, a very sharp c u t - o f f fi l t e r (anti-al iasing fi l t e r ) is

absolutely requ i red in the signal path to remove al l the unwanted

harmonics out of the inpu t s ignal before the sampl ing takes place. If

th is is not done, al ias ing wi l l cause unremovable distort ion components.
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2. The problem of the sampl ing frequency
_ _ _ _ ‐ _ _ _ _ _ ‐ ‐ ‐ ‐ - ‐ ‑

2-1. Minimum value

In the d ig i t a l audio fi e l d , proper selection of a convenient sampl ing

f requency i s ex t reme ly impo r t a n t .

I t should indeed be avoided to select the sampling ra t e unnecessar i ly

h igh, since this tends t o increase the hardware costs d r ama t i c a l l y.

On the other hand, since ideal l ow -pass fi l t e r s do not ex is t , a cer ta in

sa fe t y margin must be incorporated in order to avoid any frequency

higher than 0.5fs f r om passing through the fi l t e r with insuffic ient

attenuation.

There fore , i f we wish to reproduce a fl a t audio bandwidth of 20 Hz ‑

20.000 Hz, a sampling frequency of 44 kHz can be considered as a

minimum, g iv ing 22 kHz a s extreme frequency where the “ a n t i - a l i a s i n g

fi l t e r " al ready gives su ffic ien t attenuation (60 dB) to make eventual

a l ias ing components inaudible (F ig . 1 -6 ) .
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2-2. _l_J_se of 4&056/44J kHl

Ano t he r impo r t a n t cr i ter ion f o r selection o f a sampl ing f requency l i e s i n

the f a c t t h a t , to ar range the d ig i t a l information in a video-l ike s igna l ,

(as i t is done in a l l the PCM-adapters which use a standard helical-scan

video recorder as a s to rage medium) there must be a fixed re la t ionsh ip

between sampling f requency (fs), the horizontal videof requency (fh) and
the vert ical f requency (fv). Fo r th i s reason, these frequencies must be

derived f rom the same master clock by f requency d iv is ion , o r in other

words, fs and fh should have an as-low‐as-possible Least Com mon

Mul t ip le .

In the NTSC system, fh =15.734,2657... Hz (a n o n ‐ i n t e g e r value, due to

the necessary re la t i onsh ip with the NTSC chroma and audio subcarr iers) ,

whereas in the European PAL or SECAM systems, fh = 15.625,0 Hz.

Calculations have shown t h a t , f o r the NTSC system, a f requency of

44.055944... Hz would come closest to th is idea l , whereas f o r the PAL

system, a frequency of 44.100 Hz was also qui te feasible.

The di f ference between these two frequencies is only 0,1%, which is

negl igible f o r normal use ( the d i f fe rence translates as a p i t ch d i f f e rence

at playback, and 0,1% is en t i r e l y imperceptible).

As a consequence, 44.056 has been adapted as sampling frequency in the

EIAJ-standard f o r PCM-adapters f o r E I A J , while 44.1 wi l l be used by

adapters f o r the CCIR-system, as well as f o r the f u t u r e Compac t D i g i t a l

Audio Disc. '

_ 1 3 ‑
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derived f rom the same master clock by f requency d iv is ion , o r in other

words, fs and fh should have an as-low‐as-possible Least Com mon

Mul t ip le .

In the NTSC system, fh =15.734,2657... Hz (a n o n ‐ i n t e g e r value, due to

the necessary re la t i onsh ip with the NTSC chroma and audio subcarr iers) ,

whereas in the European PAL or SECAM systems, fh = 15.625,0 Hz .

Calculations have shown t h a t , f o r the NTSC system, a f requency of

44.055944... Hz would come closest to th is idea l , whereas f o r the PAL

system, a frequency of 44.100 Hz was also qui te feasible.

The di f ference between these two frequencies is only 0,1%, which is

negl igible f o r normal use ( the d i f ference translates as a p i t ch d i f f e rence

at playback, and 0,1% is en t i r e l y imperceptible).

As a consequence, 44.056 has been adapted as sampling f requency in the

EIAJ-standard f o r PCM-adapters f o r E I A J , while 44.1 wi l l be used by

adapters f o r the CCIR-system, as well as f o r the f u t u r e Compac t D i g i t a l

Audio Disc. '
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2-3. Use of 50.4 kHz

Fo r studio r e c o r d i n g , most ly using the mul t ip le - t rack record ing

technique, the helical-scan recorders are not so idea l , t he re fo re

s ta t ionary -head recorders are being designed, g iv ing up to 48-channel

record ing  capab i l i t y.

One of the aspects of such studio recorders is t h a t the tape speed must be

adjustable, in order to allow easy synchronizat ion between several

machines, correct t u n i n g , e t c . If we consider a speed t u n i n g range of

1 0 s , a sampl ing f requency of 44 kHz could become less than 40 kHz.
which is insu ffic ien t to comply with the Nyquist c r i te r ion . There fore ,

such machines should use a h ighe r sampl ing r a t e , f o r example 50 k H z ,

which a t the lowest speed would s t i l l give a s a t i s f a c t o r y 4 5 k H z .

However, t o allow direct (d ig i ta l ) dubbing between such s t a t i o n a r y head

recorders and helical-scan recorders (which wi th the i r two-t rack

capabi l i ty are ideal and rel iable master recorders), conversion between

the higher and the lower (44.1 kHz) sampl ing r a t e must be possible. To

do this in an economical way, a simple mathematical re la t i onsh ip

between both frequencies i s i m p o r t a n t . A frequency t h a t has a n i n t e g e r

re lat ionship (8 /7) wi th 44.1 kHz is 50.4 kHz. Also, 50.4 kHz has a good

re la t ionsh ip with various TV and fi l m standards (25 f rames/sec) , so i t i s

also possible to make d i g i t a l data blocks coincide with f rames. Fo r

these reasons, Sony as well as some other Japanese manufacturers

selected 50.4 kHz f o r the i r s tat ionary-head machines.
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2-4. Use of 32 kHz

Quite a few European broadcasters are a l ready u t i l i z i n g d i g i t a l

transmission l inks between studios and transmit ters. However, since

the FM-broadcast frequency range is l i m i t e d to 15 kHz anyhow, t h e EBU

(European Broadcast ing Union) has chosen 32 kHz as an (economical)

standard sampling f requency. The same f requency wi l l also be adopted

by t h e Japanese P.T.T. However, th i s compl icates the conversion

problems again.

3 .  Sample-Hold  Ci rcu i ts

In the p rac t i ce o f ana log - to -d ig i t a l conversion, the sampl ing opera t ion

is per formed by so-ca l led Sample-Hold Ci rcu i ts , t h a t , once the sample

has been taken, store the sampled analog voltage a cer ta in t i m e , dur ing

which the vo l tage can be converted by the A/D conver tor i n t o a d i g i t a l

code (see fu r the r ) .

The pr inc ip le of a Sample-Hold Ci rcu i t is r e l a t i v e l y simple (Fig. 1 - 7 . ) .

A basic Sample-Hold Ci rcu i t is in f ac t a 'voltage memory' device t h a t

stores a given vo l tage in a h igh-qua l i t y capac i to r. To sample the i n p u t

vo l tage, switch 5 closes momen ta r i l y ; when S opens, capac i t o r C holds

the voltage unt i l C closes again and passes the next sample. F i g . 1 - 8 .

shows a sine wave a t the i n p u t and the output o f a S/H c i r c u i t .
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'Deg]itched' output

D/A output

Fig. 1-9. S/H used as Deglitcher
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Practical c i rcu i ts obviously wi l l have bu f fe r ampl ifiers both at i n p u t and

outpu t , in order not t o l o a d the source, and to be able to drive a load such

as an MD convertor. The outpu t bu f fe r amp l i fie r must have a very high

i n p u t i m pedance, and very low bias cur ren t , so t h a t the charge of the hold

capac i to r does not leak away too r a p i d l y. Also the switch must be very

fast and have very low o f f - s t age leakage.

Sample-Hold Ci rcu i ts are not only used in A/D conversion to sample an

analog inpu t s ignal , but also in the reverse stage, a f t e r the WA

conversion, to remove transients (gl i tches) f rom the output of the OM

conver tor and thus fac i l i t a te the task o f the low-pass fi l t e r . I n th i s

case, i t i s o f ten called 'De- g l i t cher ‘ . (Fig. 1-9 . )

4. Aperture Control

The output signal of a sampling process is in f a c t a Pulse- Ampli tude

Modulated signal (PAM). It can be shown t h a t , f o r sinusoidal i n p u t

signals, the frequency characterist ic of the sampled output is :

H (WV): '‐0

In which wv = angular ve loc i t y o f i n p u t signal (= ZTEfV)

to = pulse width of the sampling pulse

ts = sampling period

. 1 9 _



Input
signal

Output
signal

Fig. 1-10. Basic c i r cu i t and waveforms of aperture control c i rcu i t
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At the output of a Sample/Hold, or a D/A converter, however, to = ts,
consequent ly  :

s in st'wv

t .Ti "v
H =(W) to = ts

This means t h a t at maximum admissible input frequency (which is ha l f

the sampling frequency). wv = ti , and consequently :
s

This decreased frequency response can be corrected by the so- called

Aperture Circuit. which decreases to and restores a noral PAM signa l .
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Fig . 1-11. Aperture time vs. frequency response
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t
In pract ica l c i rcu i ts f o r instance, most ly t0 = is‐ ,which leads to :

This is an acceptable value; reduc ing to f u r t he r would also reduce the

average output vol tage too much and thus worsen S/N- r a t i o .

F i g . 1-11. shows the f requency response f o r some values of to.

5. Characteristics and terminology of Sample-Hold Circui ts
‐ ‐ _ ‐ ‐ ‐ ‐ ‐ _ ‐ ‐ ‐ _ ‐ _ ‑

In a S/H c i r cu i t , the gc_c_u_rac_y_ to which the 'hold' ou tput vo l t age

corresponds to the o r i g i na l i npu t vol tage obviously depends on the

qua l i t y o f the bu f f e r ampl ifiers , on the leakage cur ren t o f the ho ld ing

capac i to r and of the switch 5 (usually a FET). The unavoidable leakage

causes the output voltage to decrease s l ight ly dur ing the 'ho ld ' -per iod,

which is known as '_Drgo_p_'.
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In fas t appl icat ions, the ggqu j s i t t o l t j l n e and s_e_ttl_i_r_ig_i:i_me_ are also

impor tan t . The acquisi t ion t ime is the t ime needed a f t e r the ‘Hold‑

Sample' t ransi t ion to match the i npu t signal again within a certa in er ro r

band, whereas the se t t l i ng t ime is the t ime needed a f te r the 'Sample‑

Hold‘ t ransi t ion to obtain a stable output vo l tage . Both t imes obviously

define the (theoretical) maximum sampling ra te of the un i t . The

aperture t ime is the t ime interva l between the beginning and the end of

the Sample/Hold t rans i t i on ; also terms as aper ture unce r ta in t y and

aperture j i t t e r are used to ind icate variations in the aperture t ime and

consequently variations of the sample ins tan t i t s e l f .
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Fig. 1-12. C i rcu i t and typical characteristics of 9-po'le eH i p t i c fi i t e r
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I I I . F ILTERING

In the foregoing chapter, we have seen tha t low ‐pass fi l t e r i n g is required

a t two places i n a d i g i t a l audio system

1) In the A/D stage before the i n p u t sampler we need an an t i - a l ias ing

fi l t e r , t h a t d ras t i ca l l y suppresses a l l i n p u t frequencies h igher than the

Nyquist f requency.

2) We need a reconstruct ion fi l t e r a f t e r the Sample/Hold in the D/A

stage, to separate the sampled audio s ignal f rom i t s images around the

harmonics of the sampling f requency.

Consequently, both fi l t e r s must be very l inear within the passband, and

have very high r e j e c t i o n out of it; th i s w i l l unavoidably br ing along

phase and group delay distort ions with in the audio passband as well as

r ipp le and r ing ing . Apart f rom tha t , Noise- and THO-performance of

these fi l t e r s have to be bet ter than the l im i t s posed by the quant izat ion

process i t s e l f . This i n p r a c t i c e means t h a t S/N rat ios o f 100 d B have t o

be  a t ta ined .

For the prac t i ca l real izat ion of such low-passfi l t e r s , there are several

approaches possible :

1) Passive Fi l ters (LC-type) : 7 th- to 9th-order fi l t e r s must be used to

obtain the required r e j e c t i o n . The coi ls that must b e used give problems

because o f non - l i nea r i t y, size and cost. Noise, however, i s hard ly a

problem i n this type o f fi l t e r s . See F ig . 1-12. f o r a n example o f a

passive LPF.
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2) Act ive Fi l te rs can also be used, but spec ificat ions are rnuch i n o r e

s t r ingent than usuaHy encountered in active f fl t e r designs; there fore ,

very careful design is necessary. Distort ion can be rnade be t t e r than

wi th passive f fl t e r s , but noise is worse.

3) Digital F i l t e r s : D i g i t a l fi l t e r techniques allow to design almost ideal

characteristics with re lat ive ease. Their use f o r d ig i ta l audio coding,

however, implements an increased complexi ty of the related c i r c u i t r y

( in i t ia l 'gent le 'analog ffltering with l inear phase response fol lowed by

conversion and then d ig i t a l f fl te r i ng ) . Th is is s t fl l in an exper in ienta l

s tage .
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.-m.
4-b1tcode 1 0 1 1 1 0 1 1 00010001
(2 's complement)

F ig . 1-13. Principle of quantization
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I V . PRINCIPLES OF QUANTIZATION

1. Basic Principle

Even a f t e r sampling an audio s igna l , we are s t i l l in the analog doma in :

In a_(simplified) p rac t i c a l sys tem the analog signal range is divided

(quantized) in a number of reg ions ( in our example 16), and the samples

of the signal are assigned a cer ta in value (ex. -8 to +7) accord ing to the

reg ion in which t h e y f a l l . These values are then converted i n t o d i g i t a l

(binary) numbers; in our example, 4 bi ts are needed to indicate the 16

regions (24 = 16) .

The example shows a gi_p_ol_a_r system in which the i npu t vo l tage can be

ei ther pos i t i ve or nega t i ve (the normal case f o r audio). In th is case, t he

pos i t i ve numbers are indicated by the natura l binary code (LSB = 20, 158
= 21. 253 - 22, etc . ) . while negat ive numbers are indicated by simply

complementing the pos i t i v e codes ( i .e . changing the state of al l b i t s )

and adding 1LSB.
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Fig. 1-14. Quantizer characteristic
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In such a system, one b i t ( t h e M58) is used as a s iggb ig : i t is general ly

'zero' f o r pos i t i ve values but ‘one' f o r nega t i ve values. More on the

several coding systems is given in a fur ther chapter.

i_n_tgr;v_a_l§, mostly rep resen ted by the l e t t e r Q. A d i g i t a l word assigned

to a certa in quan t i za t i on in te rva l i s assumed to rep resen t the voltage a t

the centre o f t h i s quan t i za t ion in te rva l . F i g . 1-14. shows a t y p i c a l

s tep-wise quan t i ze r characteristic.

In f a c t , quan t i za t ion can be regarded as a mechanism in which some

information (present in the inpu t sam ples) is thrown away, keeping only

as much as i s required t o r e t a i n a cer ta in accuracy (o r fide l i t y ) a s i s

needed in a certain app l ica t ion .

2. Quantization error

By defini t ion, since a l l voltages in a cer ta in quant izat ion in terva l are

represen ted by the vo l tage a t the centre o f th is in te rva l , the process of

quan t i za t i on i s a non-l inear process and creates an e r r o r, called

quan t i za t ion er ro r (o r sometimes round-o f f e r ro r ) . The maximum

quan t i za t i on e r ro r i s obviously equal to ha l f t he quan t i za t i on in te rva l 0 ,

except in the case that the inpu t voltage widely exceeds the maximum

quan t i za t i on leve l (+ o r - Vmax): in which case the signal w i l l be rounded

to these values.

General ly, such overflows or underflows are avoided by carefu l scal ing of

the input s ignal , so in th is case we can say t ha t
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F ig . 1-15. Probabi l i ty density function of quantization error

Fig. 1-16. Analogy between quant izat ion error and noise
(a) Analog signal with noise
(b) Quantized signal with quantization error
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- Q/Z 4 e(n) 4 0/2

in which em) is the quant izat ion er ro r f o r a given sample n.

I t can be shown tha t , with most types of i npu t s ignals, the quant izat ion

errors f o r the several samples wil l be randomly distr ibuted between

these two l i m i t s , o r i n other words, i t s p robab i l i t y densi ty funct ion is fl a t

(F ig.  1-15) .

0
There is a very good analogy between the quant izat ion er ro r in d i g i t a l

“systems and 'analog' noise in analog s y s t e m s : one can indeed consider

the quant ized signal as the i n fi n i t e precision signal plus the quant izat ion

error ( jus t l i ke an analog s igna l can be considered to be the sum of the

“ signal without noise Ma noise signal) (see F i g . 1 -16) . In t h i s manner,

analog systems, a "signal‐to-quantization noise" ra t i o can be

calculated.

3 . Calculation o f the theoret ical s igna l - to -no ise r a t i o o f a quant izer.

In an N-b i t sys tem, the number of quant izat ion intervals N can be

expressed as

N = 2n (1)

I f the maxi mum ampl i tude o f the signal i s V, the quan t i za t ion in te rva l 0

can be expressed as
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Q=T‘_’1‐ (2)

Since the quan t i za t ion noise is equal ly distr ibuted wi th in +/‐ 0/2, t h e

quant izat ion noise power Na is

2 0/2 _ 2 (9/2)3 _ 1 2 (3)Na = vjo x2 dx ‐-0-- 3 ‐ “1-2‐0

If we consider a sinusoidai inpu t signai with p - p ampl i tude V, the signai

p o w e r  i s

s a 1 JA2 (lsin x)2 dx =‐1-V2 (4)

Consequently, the power ra t i o signal-to-quantization noise is

V /8= ._ __ v2/a
02/12 v2 / (N-1)2 . 12

3 2T " ( f o r N > > 1 ) (5)

Or, by substi tut ing by (1)

2n- 31. 2 =2 . 3 . 2_S_ 2n-1
Na '

Expressed in decibeis, th is gives

S/N (as ) = 10 l o g (S/Na) = 10 109 3.22n-1

Working th is out gives :

S/N (dB) = 6.02 x n + 1.76

With a 16 b i t sys tem, a theoretic S/N r a t i o of 98 dB is possible; f o r a 14

b i t system, th i s vaiue is 86 dB.
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4 . Masking o f quan t i za t ion noise

Although, general ly Speaking ( i .e . with most types of i npu t signals), the

quan t i za t ion e r r o r i s randomly dist r ibuted between + and - 0/2 (see F i g .

1 ‐13.) and consequent ly s imi lar to analog white noise, there are some

cases in which i t may become much more noticeable than the theoret ical

S/N figures would indicate.

The reason is mainly t ha t , under certain conditions, quan t i za t ion can

create harmonics in the audio passband which are not d i rec t l y re lated to

the inpu t signal; since in th i s case there is no masking e f f e c t t h a t

makes these harmonics less audible, aud ib i l i t y o f such distort ion

components is much h igher than in the ‘classical' cases of distort ion
(THl) e tc . ) . Such a noise is known as 'granulation noise', o r , in bad

cases, it may become audible as heat tones, called 'bird singing'.

Audi tory tests have shown t ha t to make th is 'd ig i ta l ' noise j u s t as

percept ib le as ‘analog' white noise, measured s i gna l - to -no ise r a t i o

should be up to 10-12 dB higher !

To reduce th is a ud i b i l i t y, there are two possibi l i t ies :

a ) To increase the number o f b i ts su f fi c i en t l y (which i s very expensive)

b ) To 'mask' the d i g i t a l noise by a small amount o f analog white noise,

known as 'dither noise‘.
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Although such an addition of ‘di ther noise' ac tua l l y worsens the S/N ra t i o

_s l i gh t l y (several dB), the highly-audible 'granulation' e f f e c t can be very

e f f e c t i v e l y masked by i t .

The technique of adding ‘dither' is very well known in the d ig i ta l s ignal

processing fi e l d ; also in video applications, it is used to reduce the

v i s i b i l i t y o f the noise i n d ig i t i zed video signals.
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Fig. 1-17. Weighted current D/A converter

Fig. 1‐18. Ladder network D/A
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V. ARCHITECTURE OF AID AND D/A CONVERTORS

1. Introduction

Obviously, one of the most impor tan t components in a d ig i t a l audio

system is the conver to r i t se l f . From the foregoing. i t has become clear

that very high-resolut ion is needed to obtain a sat is factory signal - t o ‑

noise ra t i o . At the moment, 14 b i t systems (or equivalent) seem a

minimum f o r good audio perfomance. whereas, f o r video applications f o r

example, 8 bi ts are more than suffic ient . For real professional

purposes, 16 bi ts are required to leave some margin f o r f u r t h e r

processing (e.g. fi l t e r i n g . mix ing, etc. ) .

In such high- reso lu t ion, and re la t i ve l y fas t A/D converters (conversion

t ime around 20 us), we are reach ing the l im i t s of the present-day c i rcu i t

technology. This chapter wi l l explain the basic principles generally

encountered and typical specificat ions of A/D converters.

2. WA Convertors

The pr incip le of the best known, so-called ‘weighted current‘. D/A
converter is shown in F i g . 1-17. Each b i t of the input word controls a

switch in the c i rcu i t that turns On or O f f a specified current. The

several currents generated are added and buffered in an output amp l i fi e r .
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The problem in th is apparently simple circuit is the number of precis ion

resistors needed : an n -b i t convertor requires n precis ion resistors over a

value range Of 1 = 2"'1. Also the required accuracy in the resistors f o r
the highest bits is extremely high. since the accuracy of i t s cur rent

should be considerably smaller than the current switched by the LSB

(which, in a 16bi t convertor. is 1/32.768 of the current switched by the '
MSB; this means an accuracy bet ter than 0 . 0 0 3 “ ) Also th is accuracy

must be maintained over a long period of t ime and temperature range.

Therefore. in pract ice . other types ofnetworks are used f o r h igh ‑

resolution convertors, called 'ladder networks' by which some of these

tremendous problems can be s imp l i fied . An example o f a D/A convertor

using a ladder network is shown in Fig . 1-18.

The advantages are :

- Only two values of resistors are needed, which make them easier to be

matched (in value and temperature characterist ic)

- 0n l y the highest-58's resistors must have maximum accuracy. so they

can be selected from the complete batch

- 2R values can be made by using 2 times an R-value, which allows even

an easier matching.
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3. MD Convertors

\

3‐1. Ramp Count ing MD

This type of AID-convertor is the most typ ica l representative of an

approach, in which the analog inpu t is converted to a number of pulses

whose number is measured to obtain a d ig i ta l output . (F i g . 1-19.)

A l i nea r l y r i s i ng reference voltage i s generated b y a n i n t e g r a t o r . and

compared with the analog i npu t vol tage. A t the t i m e the i n t e g r a t o r i s

s tar ted, also the counter is t r iggered. and starts count ing, unt i l Vref
becomes higher than the inpu t signal ; then the comparator ’changes

state and stops the count ing. The output of the counter is then

transferred to a la tch and presented at the output.

Since the t ime taken f o r Vref to reach the i n p u t signal depends upon the

level of the i n p u t s ignal , t he number of pulses counted and hence the

latched counter output is representat ive f o r the i npu t vo l t age .

Although th is t y p e of convertor is norma l l y too slow f o r audio

applications, it can be used via a special technique, in which at fi r s t Vr-ef
r ises very fast , to produce the higher-order b i t s in a short t i m e , and then

much slower t o determine the exact i n p u t level more a c c u r a t e l y. This

technique is com monly referred to as 'change-gear' conversion, and has

been used by the BBC f o r 13-b i t convertors. (F ig. 1-20. )
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3-2. Successive-Approximation MD

A much fas ter conversion technique, and more com monly used nowadays,

is "successive approximation". The block diagram of such a system is

shown in F i g . 1-21.

A successive-approximation ADC consists of a D/A conve r te r, whose

output is compared with the i npu t vo l tage, and whose i n p u t is control led

by a l og i c c i r cu i t , called Successive- Approximation r eg i s t e r.

At the star t of conversion. only the M88 of the OM is made '1 ' by t he
control c i r c u i t , s o t ha t i t s output vol tage i s ha l f o f f u l l scale (see F i g . 1 ‑

20). I f the inpu t vo l tage is smaller than th is value, the M88 is made 0,

and the ZSB is made 1. I f t he i npu t is now bigger, the 258 remains 1 and

the 358 is made 1, e tc .

In th i s way, the output from the BIA gradually comes closer to the i n p u t

vo l tage, unt i l the LSB is t r ied out and the di f ference is minimized.

The to ta l conversion t ime obviously is equal to the clock rate t imes the

number of b i t s , which can be much smaller than in a Ramp Count ing ADC;

obviously i t s accuracy is determined by the internal DAC.
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Fig. 1-22. Deviations of A/D - D/A system transfer characteristic
(1) Gain er ror - (2) Offset error - (3) Linear i ty error

_jactua1

Fig. 1-23. Example of Non-monotonicity
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4. Errors in Practical A/D - D/A Converters

Practical MD and D/A converters wi l l unavoidably induce deviations

f rom the ideal i n pu t - o u t p u t characteristic of an MD - D/A combinat ion,

which i s o f course l inear ( i f we do not consider the r e l a t i v e l y small

quant iz ing steps).

These variations can be of various sorts :

- gain e r ro r : th is is not so impor tan t f o r audio appl icat ion, since t he

output amp l i fie r c i r cu i t r y can compensate this

- o f fse t e r r o r : th is is a dc-sh i f t in the charac ter is t i c ; although not so

serious, i t shi f ts the output signal asymmetrical ly. so tha t the to ta l

overload margin may be (sl ight ly) affected. However. in companding

systems i t can be more serious (see fur ther )

- non - l i nea r i t y : th is causes s imi lar problems as in analog c i r cu i t s , and

must consequently be kept to a minimum. Nen- l inear i t ies can come

ei ther from the analog par t of the converter, or also from the d ig i ta l

c i r c u i t , e .g . if the quantization steps are not un i fo rm, which is known as

'd i fferent ia l l i n e a r i t y error'. I f th is error is biggerthan one LSB, the

t ransfer characteristic can even change d i rec t i on , which is called 'non‑

monotonici ty ' . (F ig. 1-23.) This must certainly be avoided in d ig i t a l

audio appl icat ions.
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VI. OVERVIEW OF AID CONVERSION SYSTEMS
_ ‐ ‐ ‐ . ‐ - ‐ _ ‐ ‐ ‐ ‐ _ ‑

1. Linear (or uniform) Quantization

In the examples which we have given in the forego ing pa r t , the

quantization intervals Q were al l identical (see Fig . 1-12.) . Such a

quantization system is commonly known as 'l inear guantization'‐ _ . ‐ - ‐ ‐ ‐ _ . _ _ ‐ _ _ ‐ _ _

(although a bet ter term is ‘uniform quantization).

From a point of view of c i r cu i t s impl ic i ty and uncompromised conversion

qua l i t y, the l inear system is cer ta in ly the best. However, the l i n ea r

system is rather cost ly in terms of required bandwidth and conversion

accuracy.

Indeed. one audio channel converted to 16 bi ts with a sampling f requency

o f 44.056 kHz gives a b i t stream o f a t least 16 x 44.056 = 705 kb i t s / s ,

which requires a bandwidth of 350kHz (17.5 t imes the bandwidth of the

or ig ina l signal). In pract ice . even th is is not suffic ient because mostly

more bits w i l l be added f o r synchronization , e r ro r correction and other

purposes.

It is obvious t h a t , since the beginning of POM-telephony, ways have been

looked f o r to reduce the bandwidths tha t d i g i t i z ed audio signals requ i re ,

since especially here the capaci ty of the transmission channels should be

opt imized. Most o f these techniques can also be used f o r h igh -qua l i t y

audio.
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Another impor tant aspect is tha t the pr ice of A l l ) convertor modules

does increase dras t i ca l l y when we go. fo r ins tance , from 12bi ts to 16 bi ts

( x 100 and more); therefore, i t i s i n te res t i ng i f f o r instance 16 b i t

per formance could be obtained by using a 12 b i t module. This, however,

is not possible with l inear quant izat ion, which is bound by the physical

l im i t s o f the quant i za t ion process.

2. Companding System

I f , i n a quan t i ze r, the quan t i za t i on intervals 0 are not iden t i ca l , we ta l k

about '_ngr_i-_ljneargyantlzatjgn'. It is f o r instance per fec t l y possible to
change the quant izat ion intervals according to the level of the inpu t

signal . In general , in such systems, smal l level s ignals wi l l be quant ized

with more closely spaced intervals, while la rger incoming signals can be

quant ized wi th b igger quan t i za t ion intervals.

This is possible since, in such case, the larger signals w i l l more or less

mask the unavoidably higher noise levels of the coarser quant izat ion.

In th is way, i t i s theoret ica l ly possible to obtain, f o r instance, the

per fo rmance of a 14 b i t convertor with a 10 b i t convertor module.

Such a non-l inear quant izat ion can be thought to consist o f a l inear

sys tem, to which a compander has been added. In such a system, the i n p u t

signal is fi r s t compressed fo l lowing some non-linear law F(x ) , then

l inear l y quant ized, processed and then a f t e r reconversion, expanded by

the reverse non- l inear i t y F'1(y). (See Fig . 1-24.)
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Consequently, th is is very s imi lar to the companders used in the analog

fi e l d (e.g. Do lby. DBX and many others).

A compressor curve used quite extensively in d i g i t a l t e lephony, i . e . f o r

d i g i t i za t i on o f speech. i s the so-called “p-law"- curve. This curve i s

characterized by the fo l lowing formula

V log (1 + ux/V)
F(x) = v ‐ ‐ ‐ ‐ ‑

log(1 + p)

Curves f o r this equation are shown in F i g . 1-25. , f o r several values of p.

In Europe, another companding l a w, called the " A - law" is more

general ly used. (F ig. 1-26.)

The (dual) formula f o r the “A- law“ is :

F(x ) = A x / 1 + l o g A f o r o é x L V / a

F(x) - v + Vlog(Ax/V) / 1 + logA f o r V / a é x Q v

In prac t i ce , it is i m p o r t a n t tha t the non-linearit ies at the i n p u t and t h e

outpu t o f the system are very c lose ly matched. This i s d i f fi c u l t t o

achieve with standard analog techniques; therefore, the n o n - l i n e a r i t y

w i l l mostly be bu i l t - i n in the conversion system i t s e l f .

The big advantage of these companded systems i s , t ha t the S/N r a t i o is

less dependent on the level of the inpu t signal ; the disadvantage,

however, is t h a t the noise leve l fo l lows the leve l of the s igna l , which may

lead to audible noise modulation.
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Mos t l y, in addi t ion to companding, pre-emphasis is used to improve the

S/N and to make the noise modulation less audible.

Systems using companding, as described above, are not generally used f o r

qual i ty audio, a l though the Deutsche Bundespost is w i l l i ng to use a

similar system f o r i t s radio network and (eventually) international l i nks .

3 . F loa t ing -Po in t Conversion

A Special case of non‐ l inear quantization, t h a t is presently used in

professional audio, i s the so-called "F l oa t i ng -po i n t convertor" (F i g .

1-27.)

I n a floa t i n g - po i n t conver to r, t he sampled signal i s sent th rough severa l ,

selectable paths with a d i f f e r en t gain; dependingon the i n pu t leve l of

the s igna l , the appropriate gain is selected by a l o g i c monitor c i r c u i t , in

order to make maximum use of the l inear A/D conver to r, without

over load ing i t . The outpu t f r om the A/D convertor (cal led 'mantissa‘,

a s an analogy with l oga r i t hm i c annotation) i s now o f course

meaningless without a way to ind ica te the gain tha t was originally
selected. This in fo rmat ion is provided by a l o g i c output f rom the

moni tor c i r cu i t , cal led 'exponent'. Exponent and mantissa, taken

toge the r, give an unambiguous d ig i t a l word, t ha t can be reconverted to

the or ig ina l signal by se lec t ing the correSponding (inverse) gains in the

decoding stage.
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I n th i s way two b i t s o f exponen t can ind i ca te four d i f f e ren t gains. I f we

select these gains as 0, 6 , 1 2 and 18 dB f o r instance, the two addit ional

b i t s prov ide an increase of 18 dB of the dynamic range of the basic

sys tem.

Of course, since the signal leve l w i l l determine the gain of the basic

sys tem, also here there wi l l unavoidably occur noise modulation, which

may spec ia l l y become audible when f o r instance an h igh - l eve l , low

frequency signal occurs; in th is case, the modulation noise wi l l not be

masked by the s igna l .

Because of the noise modulat ion, one must make a dist inct ion between

the dynamic range and the s igna l - to -no ise r a t i o .

The dynamic range can be defined as :

maximum signal level gRMS)
RMS leve l o f quant iza t ion noise NITHOUT signal

whereas the s igna l - t o -no i se r a t i o ' i s

signal l e ve l {RMS}
RMS level of quant izat ion noise WITH signal

A curve f o r the s igna l - to -no ise ra t i o o f a typ ica l fl o a t i n g - po in t

converter with a 10 b i t mantissa,a 3-b i t exponent and 6 dB gain steps is

shown in F ig . 1-28.

Al though, t h e o r e t i c a l l y, t h i s system provides the same dynamic range a s

a 17 b i t l i nea r system (over 100 dB), i t can be seen tha t the S/N i s much

worse, in fact unacceptable f o r h i gh - qua l i t y purposes.
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Fig. 1‐29. Example of block f1oating-point encoder
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I n spi te o f t h i s , h igh ‐qua l i t y fl o a t i n g - p o i n t converters having e . g . a 1 3

b i t mantissa and 3 b i t exponent, are s t i l l being considered f o r d i g i t a l

audio purposes, since they are considerably cheaper than l i nea r systems.

4 . Block F loa t i ng -Po in t Conversion

When economy of bandwidth ( i .e . b i t - r a t e ) i s o f utmost impor tance , so ‑

called Block Conversion can be used. This technique is also known as

“Near-Instantaneous Companding' (in contrast to 'normal' fl o a t i n g

po in t , or other companding systems). The term Near-Instantaneous

means t h a t not eve ry sample is scaled by an exponent, but a number of

successive samples (most ly 32). Each block of 32 samples is then

fol lowed by a scale f a c t o r word, so t h a t , a t the rece i v i ng end, each block

can be co r rec t l y scaled up again .

This system is ra t he r expensive as f a r as hardware is concerned, bu t

permits s i g n i fi can t reduction in b i t ra te . Consequently, a t yp i ca l

app l ica t ion is d i g i t a l transmission of audio signals in radio networks.

Sub jec t i ve tests have shown t ha t an or ig ina l 14 b i t system compressed to

10 b i ts is almost ind is t ingu ishab le from 13 b i t l i n ea r, a l though the

l imi ta t ions mentioned in the fo rego ing paragraph remain val id.

An example of such a system is the BBC's NICAM-3 (Near- Instantaneous

Companding Audio Multiplex) which permits to transmit six audio

channels over one (standard) telephony 2048 kbit/s c i rcu i t .
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5. Di f fe rent ia l PCM and Delta Modulation

Instead o f t r a n sm i t t i n g the exact b ina ry value o f each sample, i t i s

possible to t ransmi t only the d i f f e rence between the current sample and

the forego ing one.

Since th is di fference is general ly smal l , a smaller number of b i t s can be

used with no apparent degradat ion in per formance.

The previous sample is stored dur ing one sample period, and added to the

di f ference signal to obtain the current sam ple. The current sample then

becomes the reference f o r the next one.

Di fferent ia l PCM in f a c t is a special t ype of 'Predictive Encoding'. In

such encoding schemes, a pred ic t ion is generated f o r the cur ren t sample,

based upon the past data; the co r r e c t i n g signal i s then the d i f f e r ence

between the predict ion and the actual s ignal .

I t i s clear that, when the sampling ra te is increased, the d i f fe rences

between the fo rego ing and the present samples become sma l l e r, so t h a t ,

f o r very high sampl ing ra tes , only 1 b i t is needed f o r the er ro r s igna l to

indicate the sign of the er ro r ; in th is case we talk about 'Delta

Modulation'.

In a fur ther step, the transmit ted data can be used not only to ind ica te

the sign o f the e r r o r , but also to ind ica te the step size (some kind o f

fl oa t i n g - po i n t encoding). For example, a continuous series o f ones

means tha t the signal i s quickly inc reas ing , so the step-s ize can be

increased; i f ones and zeros are a l t e r na t i n g , step size can be reduced.
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Such s t ra teg iesare called 'Adaptive Di f fe ren t ia l PCM' ( the quantizat ion

in terva l is changed) or 'Adaptive Delta Modulation' ( the step size is

changed).

Al though these techniques have some in te res t i ng theoretical and

pract ica l propert ies, i t i s presently d i f ficu l t to use them f o r h igh -qua l i t y

appl icat ions.
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V I I . CONVERSION CODES
_ _ _ _ _ _ _ . ‐ ‐ ‐ ‐ ‑

In pr inc ip le , any d i g i t a l coding system can be adopted to ind ica te the

d i f f e r en t analog levels in MB or D/A - conversion, as long as they are

proper ly defined. Some, however, are be t te r f o r cer ta in appl icat ions

than others. Two main groups e x i s t : Unipolar codes and Bipo la r codes.

The Bipolar codes give in fo rmat ion on both the magnitude and the sign o f

the signal , which makes them preferable f o r audio appl icat ions.

1. Unipolar codes

Depending upon the appl icat ion, the fo l l ow ing codes are most ly used :

a_)__NaE1ral_Bin_ary_Code_

The MSB has a weight o f 0.5 (2-2), t h e 238 has 0.25 (2-2) etc . un t i l t he
LSB (nth SB) which has a weigh t o f 2 ‘ " .

Consequently, t he maximum value tha t can be expressed (when a l l b i t s

are one) is 1 - 2 ‘ " , or in other words Full-scale minus one LSB.

9>_Bc_0 69.05
The well-known 4 b i t code in which the maximum value is 1001 (decimal

9) , a f te r which we reset to 0000. A number of such 4 b i t codes is

combined in case we want, f o r ins tance, a d i r ec t read -ou t on a numeric

scale such as in D i g i t a l Vol tmeters. This code is consequently not used

f o r audio.
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Table 1-1.

Positive
Number Reference

Negative
Reference Magnitude

Sign +

Commonly used Bipolar codes

_ 70 ‑

Two's
Complement

Decimal Fraction

Offset
Binary

1 1 1 1

1 1 l 0

1 1 0 1

1 1 0 0

1 1

Complement
One's



Q Grey Ede.
Is used when the advantage of changing only one b i t p e r transit ion is

i m p o r t a n t , f o r instance in posit ion encoders where inaccuracies might

otherwise give completely erroneous codes; is easily convertible to

b i n a r y. Not used f o r audio.

2. B ipo lar Codes.

These codes are similar to the unipolar natural b i n a r y code, but one

additional b i t , the sign b i t , has been added.

The best-known codes are sign-magnitude, o ffse t b i n a r y , two's

complement and one's complement. The structure of each of these

codes is compared in table 1 -1 .

a) Sign-Magnitude

The magnitudeof the vo l tage is 51“ mply expressed by i t s normal (unipolar)

b inary code, and a sign b i t i s simply added t o express the p o l a r i t y.

An advantage is t h a t the transi t ion around zero is rather simple, in

contrast t o the other codes; h o w e v e r, i t i s more d i f fi c u l t t o process

(computation) and there are two codes f o r zero.

ELOfisetj inity
This is a natural b inary code, but with zero at minus f u l l scale; th i s

makes it r e l a t i v e l y easy to implement and f o r computation use.
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c) Two's Complement

Is very s imi la r to o f f se t b i n a r y, bu t wi th the sign b i t inver ted .

A r i t h m e t i c a l l y speaking, two‘s complement i s taken b y complementing

the posi t ive value and adding 1 LSB.

e .g . +2 0010

-2 1101 + 1 = 1110

I t is very useful f o r computat ion, since f o r ins tance, pos i t ive and

negat ive numbers added toge the r always give zero (disregarding the

ex t ra  ca r ry ) .

e .g . 0010

+1110

I t i s the code almost un iversa l l y used f o r d i g i t a l audio; there is

however, (as with offset binary) a rather b ig transi t ion at zero (a l l b i ts

change from '1 to ' 0 )

d_) 0_ne‘s_corElem_ent
Here negat ive values are f u l l complements of pos i t i ve values. This code

is not so commonly used as the fo rego ing ones.

Furthermore, there ex is t variations on the fo rego ing codes such as

modified s ign- magni tude, com plementary o f f s e t b i n a r y, e t c . These wi l l

not be discussed here.
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P A R T  I I

REGISTRATION METHODS AND FORMATS

I .  O U T L I N E

The fi e l d in which the advantages of using d i g i t a l techniques are most ly

im mediate ly recognizable, is the fie ld of magnet ic reco rd i ng . In the

analog world, i t i s th i s magnet ic reco rd ing t h a t creates the b igges t

de te r io ra t ion o f the or ig ina l sound : i t i s d i f fi c u l t , i f not imposs ib le , to

obtain a fl a t frequency response at a l l s ignal leve ls , s igna l - to -no ise

r a t i o is l im i ted to some 70 dB, the sound is deteriorated by speed

variations of the recorder mechanism, there exist crosstalk and p r i n t ‑

through problems, and each addi t ional copying, e.g. dur ing mixdown,

deteriorates the character is t ics even f u r t h e r. In addition to t h i s , to

keep the equipment wi th in close specificat ions, as requ i red in a

profess ional env i ronment , f requent and cos t l y r e a l i g n m e n t and

maintenance are requ i red .

Recording of sound under the form of d i g i t a l data, on the c o n t r a r y,

v i r t ua l l y solves a l l o f these drawbacks :

- I t i s p e r f e c t l y possible t o obtain a very fl a t frequency response a t any

signal l eve l .
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- S igna l - t o -no i se ra t i o depends only on the conversion equipment and can

theore t i ca l l y be made a r b i t r a r i l y h igh .

- How and flu t t e r is v i r tua l l y non-existent

- Crosstalk and pr in t - th rough do not deteriorate the sound ( in f a c t do not

ex is t as such)

- Theoret ica l ly, an i nfin i t e number of d i g i t a l copies is possible without

degradation of the sound.

Recording of d i g i t a l data , however, presents some spec i fic problems :

- As mentioned a l ready, the required bandwidth is increased

dramat ica l ly as compared to the or ig ina l s igna l .

- Fo r this and other reasons, Spec ific codes must be used f o r reco rd ing ( i n

contrast to the simple data codes mentioned before).

- Cont rary to analog record ings, even very small drop-outs on the tape

can have disastrous audible e f f ec t s , and, consequently, t hey must be

e lec t ron ica l ly cor rec ted. For that e f f e t , addi t ional data must be

recorded on the tape which fu r ther increase the necessary bandwidth.

- Synchron iza t ion o f the recorded data stream is necessary to allow f o r

recons t ruc t ion o f the recorded words. The addit ional synchron iza t ion

bits again increase the bandwidth.

- In contrast to analog record ings , ed i t i n g is very compl icated and

requires additional complex c i r c u i t r y . For t ape - cu t ed i t i n g , common

p rac t i c e in the analog reco rd i ng fi e l d , a very s t rong er ror cor rec t ion

scheme toge ther with in te r leav ing are needed. Even then , very care fu l

handling is a must; f o r instance, the tape cannot be touched with bare

finge rs .

- 7 9 _



I I . CODES FOR D I G I TA L MAGNETIC RECORDING

1.  In t roduct ion

The b inary codes, represent ing the or ig ina l audio signal , can be recorded

on tape in two ways : e i ther d i r e c t l y , which i s the case in s ta t i ona ry -head

recorders, or a f t e r f requency- modulation, which is the case in h e l i c a l ‑

scan recorders.

In case frequency-modulat ion is used, t h e data can be modulated as t h e y

are, which is mostly so in so-called 'Non-return-to- zero' f o r m a t (see

fu r the r ) . I f they are recorded d i r e c t l y, however, they have to be

transformed to some new code to obtain a record ing s ignal which matches

a s well a s possible the proper t ies o f the magnetic ( o r e v e n t u a l l y, i n case

o f discs, Optical) r e c o r d i n g channel.

This code should have a f o r m a t so as to obtain the highest b i t densi ty

pe rm i t ted by the l i m i t i n g character ist ics of the record ing channel

(frequency response, d rop ‐ou t ra te e t c . ) . Also, i t s l ow- f requency (o r

DC-) content should be decreased or e l im ina ted , since as is com monly

known, magnetic recorders cannot reproduce very low frequencies or DC.

The coding of b inary data in order to comply with the demands of

magnetic reco rd ing i s o f t en referred to as 'channel coding‘.
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2. Non‐return to zero (NRZ)

This code is one of the oldest and best known of a l l 'channel codes'.

Bas ica l ly. 'one's are represen ted b y posit ive m a g n e t i z a t i o n , and 'zero's
b y negat ive m a g n e t i z a t i o n . I n f a c t , the 'normal' serial data i n d i g i t a l

equipment are most ly in NRZ. A succession of the same codes presents

no change in the signal , so tha t there can be a s i g n i fi c a n t low- f requency

content , which is undesirable f o r stat ionary ‐head reco rd i ng . We say

that simple NRZ is not a 'Run-Length Limited' Code.

For helical-scan (video-) reco rd i ng however, the data are FM- converted

before being recorded, so this p rope r t y is not so important. NRZ is
therefore commonly used in such formats as PCM-1600 and the E M . ) ‑

fo rmat (PC M-100, -10) .

Furthermore, there exist several variations on NRZ f o r opt imiz ing

various appl icat ions, but we wi l l not discuss them here.

3. Bi-phase

Simi lar to NRZ, but extra transit ions have been added at t h e beginning of

every data b i t interval. As a resu l t , DC-content is eliminated and

synch ron i za t i on becomes easier, but the density o f data transi t ions has

been doubled.

This code (and i t s variants) is also known as Manchester Code,

Frequency-shift-keying (FSK) and Frequency-modulat ion (FM).
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4. Modified-frequency- modulation (MFM)

Also called Mil ler Code or De lay -modu la t i on . Ones are coded with

transit ions in the middle of the b i t ce l l , isolated zeros are i gno red . and

between pairs of zeros, a transi t ion is inserted.

This code requires almost the same, r e l a t i v e l y low bandwidth a s NRZ , but

has a reduced DC‐content. The log ic needed f o r decoding is more

compl icated.

A variat ion i s the so-cal led Mod i fied -mod i fied - f r equency ‐ modulation

(MZFM).

5, 3-Position Modulation (3PM)

This is a code. which permits to obtain very high packing densi t ies, but

which requires a rather complicated hardware.

In pr inc ip le , 3PM-code is obtained by d i v i d i ng the or ig ina l NRZ-data in

blocks of 3; each block is then converted to a 6- b i t 3PM-code, which is

especial ly designed to opt imize the maximum and minimum run leng ths .

In this way, minimum t ime between transit ions is two t imes the or ig ina l

(NRZ- ) clock r a t e , whereas the maximum is six t imes the or ig ina l r a t e .

For detect ion, however. a clock signal twice ashigh as the o r i g i na l s igna l

is needed; consequent ly, th is reduces the j i t t e r margin of the system.

This clock is normal ly recovered from the data i t s e l f , which have an high

harmonic content around the clock f requency.
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6. High Density Modulation - 1 (HDM- l )
_ _ ‐ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

This a variation upon the 3PM-system; Density r a t i o i s the same as 3PM,

but clock recovery is easier and required hardware s imp le r. It is

proposed by Sony f o r stat ionary-head record ing .

7 . E igh t - to -Four teen Modulation (EFM)

This code is used f o r the proposed Compact Disc D ig i t a l Audio System.

The pr inc ip le is again s imi lar to 3PM but each block of 8 data bi ts is

converted in to 14 channel b i ts , to which 3 extra bi ts are added f o r

merging (synchronization) and l ow - frequency suppression; in this way,

a good compromise is obtained between clock accuracy (and possible

detection errors) , minimum DC-current ( i n disc systems, l ow ‑

frequencies in the signal g ive noise in the servo systems), and hardware
complex i ty. Also this modulation system is. very well suitable f o r

combination with the error-correct ion system proposed f o r the same

form a t (see f u r t he r ) .
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I I I . PRINCIPLES OF ERROR CORRECTION
_ ‐ - _ - ‐ ‐ ‐ ‐ ‐ _ ‐ - ‐ ‐ ‐ _ _ ‐ ‐ . ‐ _

1. Type of Code Errors

When d ig i t a l signals are recorded and subsequently played back, many

types o f code errors can occur. Now, i n the d i g i t a l fi e l d , even small

errors can cause disastrous audible effec ts : suppose f o r instance tha t

only the mos t - s i gn i fican t b i t i s erroneously detected as '1' instead o f ‘0'

: th is wil l make the signal r ise ( f o r a short t ime) by hal f i t s maximum

value, which wil l g ive a qui te audible ' c l i ck ' ! Since th is i s en t i re ly

unacceptablein the very-high-qual i ty context t ha t can be expectedfrom

d ig i t a l audio, a l o t of e f fo r ts must be made to de tec t , and subsequently

co r rec t , a s many errors a s possible without making the c i r c u i t r y

ex t reme ly compl icated (o r the recorded bandwidth extremely high) .

We can basically dist inguish the fo l l ow ing causes f o r code errors :

1-1. Dropouts

Dropouts are caused by dust or scratches on the magnet ic tape (o r record

surface). They most ly cause re la t i ve l y l ong - t ime errors, i n which long

'bursts' o f related data are a l l los t t o ge t he r.

In d i g i t a l magne t i c recording. dropouts consequently cause a very

d i f fi cu l t situation f o r the decoding section.
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1-2 . J i t t e r

In magnetic recorders , a certain amount of j i t t e r is unavoidable, due to

mechanical improper t ies of the tape transpor tat ion mechanism. J i t t e r

can cause random errors of isolated data. Wecan define j i t t e r marg in

as the maximum amount of j i t t e r which s t i l l permits to detec t the data

c o r r e c t l y ; i f the minimum run leng th o f t h e signal i s " c , then t h e j i t t e r

margin wi l l be ‘C/Z. F ig . 2-1. shows th is with an NRZ-s igna l as an

example.

1 -3 . Intersymbol Inter ference

In d i rec t (stationary head-) r e co rd i ng , a pulse is not recorded asa pulse,

but as a posit ive current fol lowed by a negative current (see F i g . 2 -2 . ) .

This causes the actual period of the s igna l t h a t is read on the tape (T1) to

be h ighe r than the b i t period i t s e l f (T0). Consequent ly, i f the b i t r a t e is

very h igh , the detected pulse wi l l be wider than the or ig ina l pulse (b) in

the fi g u r e , and in ter ference may occur between adjacent b i t s , which is

known as In te r symbo l Inter ference or Time Crosstalk. Intersymbol

Inter ference also causes random errors, depending upon the b i t s i tuat ion.
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1-4. Noise

Noise may have a similar e f fec t as dropouts (d i f ferent ia t ion between

both i s often d i f fi c u l t ) , but also random errors may occur in case o f pulse

noise.

1 -5 .  Ed i t i ng

Tape e d i t i n g always destroys some informat ion on the tape, which

consequently must be corrected. Whereas with electr ic e d i t i n g , t h e

errors can be kept to a minimum, t a p e - c u t ed i t i ng wi l l a lways cause v e r y

long and serious errors.

2. Error Compensation Mechanism

The possible mechanisms f o r compensat ion are shown in F i g . 2-3. I f t h e

errors can be corrected by the error correct ion system (the pr inc ip les of

which are explained below). there is no problem since a l l data t h a t are

passed to the D/A stage wil l be 0 K. Errors, which cannot be cor rec ted ,

must fi r s t be detec ted, a f t e r which an error concealment mechanism

can be switched i n . I f the er ro r detect ion system fa i l s however,

en t i r e l y f a u l t y data may be sent to the D/A converter which w i l l g ive an

audible disturbance in the s igna l .
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3. E r ro r 0 etect ion
_ ‐ ‐ ‐ ‐ ‐ ‐ ‑

3-1. S imple P a r i t y Check ing

To detec t whether a certain data word contains an e r r o r , a very simple

way is to add one extra b i t to i t , which is given the value 0 or 1 depending

upon the number o f 1's i n the word i t s e l f .

Two systems are possible :

- Odd par i ty : here we wi l l “make t h e number of 1's odd.

Example (4 b i t data) :

um
data p a r i t y

um
data p a r i t y

- Even par i ty : we will make the number of 1‘s even.

E x a m p l e  :

we
data p a r i t y

L°_°JLJ
data par i t y
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Gene r a ] form :

- fl fl fl fl
L _ |

data pa r i t y

p = d1® dz® d3® d4® a
(Even par i ty : a=0; odd par i ty : a=1)

(@= symboi f o r modulo-2 addit ion)

When we now receive the i ncom ing 'data + pari ty ' biocks, we know tha t

the sum of the '1's in the message must always be odd (or even). If th i s

is not the case. we know tha t there has been a transmission er ro r.

This rather e‘ lementary system has severai obvious d isadvan tages :

- Even i f we know there has been an e r r o r , we have no way t o know which

b i t was f a u i t y , so we cannot correct the message.

- If two bits of t h e same word are f a u i t y , the errors may compensate each

other and we do not de tec t any er ro r.

3-2 . Extended Pa r i t y Checking

To increase the probabil i ty of d e t e c t i n g errors, we can add more than one

par i ty b i ts to each block of data.

If\ we consider the construction of F i g . 2 -4 . , cons is t ing of (m - 1) blocks

of n data bits each. To these blocks, a mth biock of par i ty b i t s , caHed

the 'par i ty biock', wfl l be added by modu10-2 addition of a l l subsequent

data b i t s of each block :
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p1 d1,@d2,@ooo dm-1’1
p2 = d1,2®d2,2€)m dm-1,2

pn= d1’@d2,,@... dm-1,n

If the number of par i t y b i ts is n, i t can be shown tha t ( f o r a reasonably

h igh value of n) the misdetection probabi l i ty is 1/2".

3-3. Cyc l ic Redundancy Check Code (CRCC)‐-‑

There exists another check ing scheme called Polynomial or Cyc l i c coding

t h a t can be designed to perform with h ighe r efficiencies than traditional
pa r i t i es . The principles behind CRCC codes are as fol lows :

A very convenient way to express a b i t stream (or word or message) of n

b i t s is to think of it as an algebraic polynomial in a variable x with n

terms.

For example. the word 10011011 may be wr i t ten as fol lows :

M(X) = 1-x7 + 0.x5 + 0.x5 + 1.x4 + 1.x3 + 0.x2 + 1.x1 + 1.x0
x7 + x4 + x3 + x + 1

. 9 9 .
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F ig . 2-5. CRCC Checking pr inciple

- 100 ‑



Now to compute the cyc l i c check on M(x), another polynomial G(x) is

chosen, with a degree r which is less than the degree of M(x). bu t g r ea t e r

than 0 o f course; f u r t he rmo re , t he x0 term must be 1 .

Then, in the CRCC encoder, M(x) and G(x) can be divided

" ( fl / G U ) = G(X) + N H
In which G(x) is the quot ient of the

division
R(x) is the rest .

Then, a new message U(x) can be generated as follows :

U(x) = M(x) + N”

This U(x) can always be divided by G(x) .

I t is th is message U(x) t h a t is recorded (o r t ransmit ted) . When in the

playback (o r a t the rece i v i ng end), an er ro r E(x) occurs, we receive the

message V(x) instead of U(x) :

V(X) = U(X) + E(x)

In the CRCC decoder, V(x) is again divided by G(x). and i f t he res t of t he

division is zero , we can decide tha t no error has occur red ; i f there is a

res t , howeve r, there has been an error.
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15 14 13 12 11 10 1

M " 0 I I I I I I I I I I I I I I I I I I I I I I I
+ x5 + x2 + 1

”WII I I I I I I I I I IMIH
x1 + x + x7 + x5

U ( X ) I I I E I I I I I I E I I I I I I I I I I
+ x10 + x7 + x5 + x + 1

W ‐ J
x5 M(x)

Fig . 2-6. Example of the generation of transmission po1ynomia1 U (x)
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This process is schemat i ca l l y shown in F i g . 2-5.

E x a m p l e  :

The message is

M ( x ) = x 9 + x 5 + w 2 + 1
The Check polynomial is

G ( x ) = x 5 + x 4 + x 2 + 1

Now, before d iv id ing by G(x) , which is a 5th-order polynomial , we

mul t ip l i ca te M(x) by x5; o r i n other words, we sh i f t M(x) 5 places to te

l e f t . This is done in preparation of t h e fi v e check bi ts t h a t w i l l be added

to the message.

x5.M(x) = x14 + x10 4. x7 1. x5

Then the division is made :

x5 .M(x ) /e (x )= (x9+x8+x7+x3+x2+x+1)+ (x+1)
| _ _ _ _ _ _ _ _ . _ _ _ ' _ ‐ - ‐ ‐ - ‐ - ‐ ‐ ‐ - ‐ ‘ ; _ _ l

quot ient res t

x5.M(x) + (x + 1)
x14 + w10 + x7 + x5 + x + 1 which can be divided by G(x)

U(x)

F ig . 2 -6 . shows the b i t patterns f o r these exam ples. I t can be seen t h a t

in f a c t , the data are unmodified (only shif ted), and tha t the check b i t s

fo l low at the end.
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Fig. 2-7. B1ock diagram and layouts of Fairchild 9401 CRC checker
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CRCC check ing is very effect ive- to de tec t any transmission errors; only

if E(x) by coincidence is exac t l y dividable by G(x), no er ro r will be

detected. This obviously w i l l occur only seldom, and, knowing the

characterist ics of the transmission (or storage) medium, polynomial

G(x) can be chosen such, t ha t th is possibi l i ty is fu r ther minimized.

A l though th i s e r ro r - check ing system seems ra the r f a r - s o ugh t , i nvo l v i ng

compl icated ari thmetic Operations, in f a c t the divis ion can be done

re l a t i v e l y s imply using modulo-2 a r i t hme t i c , o r i n other words using

exclusive 0 R's. There exist complete 1 - c h i p CRCC generator/checkers,

such as the Fairchi ld 9401; these i.c. 's generate some selectable

standard polynomials, agreed by such organizations as CCITT, and

au toma t i ca l l y add the necessary check bi ts to the data. When used as a

checker, data and check bits are entered and ve r i fied , and an E r ro r s ignal

generated whenever necessary.

F i g . 2-7. gives the l a y - o u t and the Block Diagramof the Fairchi ld 9401.

4. Er ror Concealment Methods

Hhen errors are too big to allow cor rec t ion o f the data by the Er ror

Correction Code (see fu r the r ) , 'E r ro r Concealment' must be adopted.

E r r o r Concealment i s a way o f r econs t r uc t i ng the samples. o f which the

data have been i r repa i rab ly l o s t , i n such a way tha t the audible e f f e c t i s

minimized.

The fo l l ow ing concealment methods are theo re t i ca l l y possible :
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Fig. 2-8. Examples of error concealment
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4-1. Mut1ngo

When an error is detected, the signal is sho r t l y muted; th i s system is

hardly bet ter than doing nothing, and is consequently not in use.

4-2. Previous_wor;c_i_ hold.

Hhen word is detected as erroneous, it is rep laced by the value of the

previous sample. Fo r low frequencies. this is an acceptable method;

f o r h igh frequencies, however, i t may give qu i te audible disturbances in

the signal , which is understandable since in the extreme case the

sampling frequency is only tw ice the signal f requency !

4‐3. L inear In terpo la t ion.

Also called averag ing ; when a word i s m i s sed , i t i s g iven the mean value

o f the preceding and fo l l ow ing words. This i s a very sa t i s f a c t o r y

method which gives almost inaudible concealment in most cases.

4-4. H igher -o rder polynomial in te rpo la t ion .

Gives a be t te r est imation o f the missing sample by mathemat i ca l l y

t a k i n g in to account more preceding and f o l l ow i ng words. Al though

much more complicated than the foregoing system, i t may be worthwile

to use it in very c r i t i ca l applications.
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5. Error Correction

5-1. Introduct ion

As we have seen before , when errors are detected, concealment is

possible; concealment on l y, howeve r, i s not s o s a t i s f a c t o r y , especially

at higher frequencies. Therefore, we must correct the majo r i t y of

errors instead. When errors are to be corrected, we must not only k n o w

t h a t an error has occurred, bu t also exac t l y which h i t or b i t s are wrong.

Since there exist only two possible states (0 or 1 ) , correction is then j us t

a matter o f revers ing the state o f the erroneous b i t s .

Bas ica l ly, correction (and detection) of code errors can be achieved by

adding to the data b i t s an additional number of check b i t s , t h a t are known

as ‘redundant' in format ion. This redundancy in format ion has a

certain connection with the actual da ta , so t h a t , when data ge t l o s t , t hey

can be reconstructed again f rom the ‘redundancy'. The "redundant"

information is known as the er ro r correction code. As a basic example,

all data could be t ransmi t t ed (and f o r instance recorded) tw ice (Double

Wr i t ing Method), which would give a redundancy of 1001. By compar ing

both versions or by CRCC, errors could easily be detected, and i f some

word were erroneous, i t s counterpart could be used to obta in the correct

data. It could even be considered to record eve ry th ing th ree ti mes, and

upon playback select two-out-of-three. if there were errors ; t h i s

would be s t i l l more secure. These are however ra ther wasteful systems,

and much more effic ient error correction systems can be constructed.
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Present ly, the development of s t r o n g and e ffic ien t E r ro r Correction

Codes is one o f the key po in ts o f D ig i t a l Audio Techno logy. which

differentiate between the advanced companies and the fol lowers !

A l o t o f experience can be used from computer t echno logy, where the

correction of code errors is equally impo r t an t . and where a l o t of

research has been spent in order to opt imize correction capabil i t ies of

er ror correction codes. Designing s t r ong codes is a very complex

matter. however, which requires thorough s tudy and use of h igher

mathematics. (Algebraic st ructure has been the basis of the most

1mportant codes.)

Some codes are very st rong against 'burst‘ er rors , i . e . when ent ire

clusters of b i ts are erroneous together (such as du r i ng tape drop-outs),

whereas others are be t t e r against ‘random' errors, i . e . when single b i t s

are f a u l t y .

E r r o r Correction Codes can be organized in two ways :

-Da ta bits and e r ro r correction bi ts can be organized in blocks; in th is

case we talk about _‘§l_og|_<~C_oge_s_'. Redundancy t ha t follows a block is

only generated by the data in t ha t part icular b lock.

- Data and error correction may be mixed in one continuous data s t r e am ;

in this case we ta lk about LC_om1_o_lut_ignal_qu_e5‘_. Redundancy within a

certain t ime un i t does not only depend upon the data in t h a t same t ime

un i t , but also upon data occu r r i ng a certain t ime before. They are more

compl icated, and o f ten superior in performance to block codes.
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DATA REDUNDANCY DATA REDUNDANCY

(a) Block Code

DATA + REDUNDANCY

(b) Convo1utiona1 Code

F ig . 2-9. Difference between block and convo1utiona1 codes

Fig. 2-10. Examp1e of combina t iona] par i ty checking
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5-2. Combinational (Horizontal/Vertical) Pa r i t y Check ing

I f , f o r example, we consider a b ina ry word or message cons is t ing of 12

b i t s , these bi ts could be arranged in a 3 x 4 matr ix as shown in F ig . 2-10.

Then, to each row or column one more b i t can be added to make par i ty f o r

tha t row or column even (or odd). Then, in the l owe r r ight-hand co r ne r,

a fina l b i t can be added t ha t w i l l g i ve the l a s t column an even pa r i t y as

wel l ; i t wi l l then show tha t also the l a s t row wil l have even pa r i t y.

If now this ent i re a r r a y is transmitted in sequence (row by row or column

by colu mn), and if du r ing transmission one b i t i s changed, pa r i t y check on

one row and on one column wil l f a i l , and the er ro r wil l be found at the

in te rsec t i on ; consequently, i t can be corrected.

The entire a r r a y, in the example cons is t ing of 20 b i t s , o f which 12 are

data b i t s , form a code word, which is referred to as a (20.12) code.

There are 20 - 12 = 8 redundant d ig i t s .

All the so-called E r r o r - c o r r e c t i n g codes are more o r less based on t h e

same idea , a l though by studying them bet te r in a mathematical way,

much bet te r codes than the one given in our exam ple can be constructed.
Fo r exa mple, it is possible to correct a l l s ing le errors in the same 12 h i t s

as we have shown with f ewe r redundant b i t s than 8, f o r instance by using

so‐ called Hamming codes.
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Information word Decoder

0 1 ( 1 0 0 0 0 0 0 0 ) a d . ) 0 7 N d . )

1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 R 7 0 1 1 0 1 0 0 1 S 3 0 0 0 0 0 0 0 0 ( 0 0 1 1 0 1 0 0 )
( E l )

0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 R 80 1 1 0 0 0 0 1 5 4 0 0 0 0 0 0 0 0 ( a fl z e r o )

( i d . ) ”8 ( i d . ) Syndrome word

1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 Info.word

m a . )

0 0 0 0 0 0 0 0  5 2  0 0 0 0 0 0 0 0

( 00 1 1 0 1 0 0 ) ( a n zero)

(51)

F ig . 2-11. Example of simple crossword code
Between brackets the situation of M1, received as a U1with an e r ro r.
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2-3;Cr_o£sword C_ode

In d i g i t a l r e co rd i ng , not only s ing le b i t s may become erroneous, caused

by Intersymbol I n t e r f e r ence , j i t t e r , e t c . , but ve ry o f ten as al ready

mentioned errors wi l l come in burs t s , i . e . complete clusters of b i t s may

be f a u l t y due to tape d r op ‐ outs. It wi l l be obvious t h a t , in view of the

many possible combinat ions, the correct ion of such bursts or errors is

very complicated and demands powerful e r r o r - c o r r e c t i n g schemes.

One such a code, which has been developed by Sony f o r use in i t s PCM‑

1600, is Crossword Code.

Crossword Code uses a matrix scheme as bas ica l l y explained above. b u t i t

carries out i t s operations with words instead of b i ts as units. This gives

as an advantage t h a t l a r ge block code constructions can be easily

rea l i zed , that burst e r ro r correction capabi l i ty is very h igh , and t ha t also

random errors can be very well corrected. Bas i ca l l y, it can besaid tha t

al l types of errors with a high probabi l i ty can be detected and often

co r rec ted , and tha t only errors with a low probabi l i ty of occurr ing may

pass undetected.

F i g . 2-11. shows a simple exa mple of Crossword Code, in which 4 words M1~
M4 are complemented by 4 pa r i t y or survey words R5 m R8, so t ha t :

R5 M1®"‘|2
R6 M369th;
R7= M1®M3

M2®M4R8
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M1~ R3 are then recorded. and at playback received as U1~ U3.

Now in the decoder. additional words can be const ructed, called the

Syndromes, as fo l lows :

51 0169026905
52 = U3®U4@U5
5 3 ' "169036907
54= U2®U4® Us

By vir tue of th is procedure, we can show t h a t if a l l received words U1

U3 are co r rec t , al l syndromes must be zero.

If an error E occurs in one or more words, we can say that :

u1= M1@E1fori=1-4
U1=R1®E1 f o r i = 5 - 8

Now since

51= U1® U2® U5
= N1®51®M2®52@R5®Es
= 5163526955

(since we know t h a t M1® M2® R5 = 0)

S i m i l a r l y

52 = 5363546355
53' E1®53® E7
54= E2®E4®Es.

In our example, correction can be made by the f o l l o w i n g calculation

U1®$1 or
”16353 = M1@E1®E1= M1
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7

Indication Cases 0 errors vs

IMMEWIIE E
IIIIII

i
E .I 11
i . |
[ 4’46!52!28

Total 8 Ci 8128z56k70555128

Probabi l i ty (p word error rate)

(x-P 2429(1-n)7+pz(1~p)5
p(1-p)7+p (1-p)°

p(1-P)7
3p2(x-p)°+p3(1-p)5
,(1-p,1.pz(1-p)s

p(1-p)7¢p (1-p) '
pztl-p)‘
pz(1-p)6
392(1-p)5*p3(1-p)5
ap3(1-p>5~5p4(1-p)‘+p5(l-p)J
p(1-p) ¢p ( l - o J '
p2(1-p)°
p2(1-p)6
sp3(1-p)5+p4<1-n>‘
p2(1-p)5«p3(l-p)5
92(l-p)6+p3(l-n)5
3p2(1-p)°-P3(1-p)5
920-9)6
ap3(1‐p)5+5p
pan-p)6
893(l-p) +5p4(l-P)'+95(1-p)3

“(l-p)‘+p5(1-p)3

p .

3p3(1-p):+p‘(1~p>:
3gJ(l-pg *p (1-0)
p (1~p)
p3(1.p)5 ”TU-DVDS
4p3(l-n)5*4sp‘(1-p)“‘52p5(l-p)3~zap°<1-p)2+

Fig. 2-12. Decoding algorithm f o r crossword code
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Of course, there i s s t i l l a poss ib i l i t y t ha t s i multaneous errors in a l l words
compensate each other to give the same syndrome patterns as in our

example. The probabi l i ty o f t h i s occu r r i ng , however, is ext remely l o w ,

and can be disregarded

In prac t ica l decoding now, when errors occu r, the combination of the

values o f the syndromes are i n ves t i g a t ed , and a decision i s made whether

there is a good probabi l i ty of successful cor rec t ion . I f t he answer is

yes, correction is carried ou t ; if the answer is no, a concealment

method w i l l be used (e i ther average value in terpo la t ion or previous word

hold). The algor i thm along which this dec is ion -mak ing occurs must be

decided via probabi l i ty ca lcu la t ions, but once i t is fi x ed , i t can eas i ly be

implemented, f o r instance in a P-ROM.

F i g . 2-12. shows the decoding algor i thm f o r the Crossword Code we

discussed. As wi l l be seen, depending upon the value of the

syndrome(s), decisions are made f o r cor rec t ion according to the

probabi l i ty o f miscor rec t ion; the r i g h t column shows the probabi l i ty

f o r each situation to occur.

The example does not show a code which i s ac tua l l y used in a recorder

such as POM-1600; the p rac t i ca l system wi l l be discussed l a t e r on when

the recorder i t s e l f is described.
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5-4. b -Ad jacen t Code

A d i f f e ren t code which i s very useful f o r co r rec t i ng random and burst

errors at the same t ime has been described by 0 . 0 . Bossen of IBM, and

called b-Ad jacen t code. The b ‐Ad jacen t e r ro r correction system is

used in the EIAJ- format f o r home-use helical-scan d ig i t a l audio

recorders.

In th is f o r m a t , two P a r i t y words, called P and Q are constructed as

fol lows :

Ian ' Ln® Rn® |-n+1® RMIG“) Ln+ZGD Rn+2

on . T5.Ln®T5.Rn®T4.Ln+1@T3.Rn+1®T2.Ln+2@ T.Rn+2

in which T is a spec ific matrix of 14 words of 14 b i t s . Ln. Rn e t c . are

data words from respect ively the l e f t and the r i g h t channel. (Ne

neglect the i n t e r l e a v i n g f o r s impl ic i ty. )

In add i t ion , CRC is used as er ro r po in te r.

The coding scheme of the E IAJ - f o rm at leaves possib i l i ty f o r combining

several decoding systems, accord ing t o the cost and desired r e l i a b i l i t y o f

the system.

- 1 2 1 ‑



5‐5. Other codes

Many other codes ex is t since almost each manufacturer of professional

audio equipment has designed his own prefer red er ro r correction sys tem.

Most of them, however, are variat ions on the best known codes, t h a t have

names such as Reed-Solomon code, BCH Code (Bose-Chaudhuri‑

Hocquenghem), e t c .

Sony i s now preposing codes called Cross In te r leave Code f o r s t a t i o n a r y ‑

head recorders and Cross Inter leave Reed Solomon Code (CIRC) f o r the

Compact Audio Disc System (developed toge t he r with Philips).

Also in the fi e l d of e r ro r co r rec t ion , standardization between

manufacturers w i l l be v e r y im portant to allow world-wide distribution of

reco rd ings .

5-6. Inter leaving

In magnetic tape reco rd ing , i n view o f the high reco rd ing densi ty used to

record d ig i ta l audio, dropouts wi l l f requent ly des t r oy many subsequent

words a l l t oge the r

If th is were allowed to happen, er ro r correction t h a t could cope with

such situation would be proh ib i t i ve ly compl ica ted, and, i f i t f a i l ed ,

concealment would not be possible since methods l i k e in te rpo la t ion

demand tha t only one sample of a series is wrong.
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| bmstemor

hstinterleaveblockIaninterieaveblocd 3rdinter1eavebiocd

raTdom firror error error Trror

Fig. 2-13. Simpie exampie of interleaving
(a) Interleaving signals on tape; a burst e r ro r destroys four subsequent

words.
(b) Same signais a f te r de-interleaving: errors are now iimited to random

words and correction and/or conceaiment is s impi ified.
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‘For t h a t reason, subsequent words from t h e A/D convertor are n o t

w r i t t e n nex t t o each o t h e r o n t h e t a p e , b u t a t l o c a t i o n s , a

s u f fi c i e n t d i s tance a p a r t t o make sure t h a t t h e y cannot s u f f e r

f rom t h e same d r o p o u t .

In f a c t , t h i s consequent l y i s a way to conver t l o n g b u r s t er rors

i n t o a ser ies of random e r r o r s . F i g . 2-13 demonstrates t h i s in a

s i m p l i fi e d example. I t can b e seen t h a t words are arranged i n

‘ in te r leave b locks ‘ ( w h i c h are as l o n g as the distance between

two subsequent w o r d s ) .

P r a c t i c a l i n t e r l e a v i n g b l o c k s w i l l b e much more compl icated than

our example, a s w e w i l l see when d i s c u s s i n g d i f f e r e n t f o r m a t s .

6 . Record ing formats in ac tua l use

6-1 . The POM-100 & PCM-Fl f o r m a t

1) Th is fo rmat uses t h e EIAJ-standard which is summarized in the

f o l l o w i n g  t a b l e .

Specification

2 (CH-1 = l e f t , CH-2 = r i g h t )
14 bits/word (pro channel)

Nunber of channels
Number of b i t s
Quantization l inear
D ig i ta l code 2's complement
Modulation NRZ (Non-Return to Zero)
Sampling frequency
B i t Transmission rate

44,056 kHz
2,634 Mbit/sec
NTSC-standardVideo Signal
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Fig. 2-14.
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2) A ho r i zon ta i pseudo-video Tine s t o r e s 128 b i t s as shown in fi ‑

3)

gu re 2-14.
The words H1 to H6 are INFORMATION words ( 14 b i t e a c h ) .

The words H1, HB and H5 are used f o r the d i g i t a l audio-data of

the Te f t channe i .

The words HZ, H4 and HGare used f o r t h e d i g i t a l aud io -da ta o f

the r i g h t channel.

The words P and Q are ERROR CORRECTION words ( 1 4 b i t s each )

They are caicuTated as foTTows:

P=w1®w2®w3 ©w4®w5®w6

®denotes the EXCLUSIVE OR - func t i on or moduio - 2 a d d i t i o n )

0 = T5w1®i5w2 ®T4w3® T3w4®T2w5@Tw6

(T is the “0 generat ion mat r i x “ and uses the poiynomiai

x14 ®x8®1)

The CRCC word fi n a i i y is a 16 b i t ERROR DETECTION word.

( I t is generated by the po iynomia i x15@x12@x5@1)

The REDUNDANCY of t h i s f o rma t is as foTTows:

we have 6 x 14 = 84 audio data bits and

(2 x 1 4 ) + 16 = 44 e r r o r co r rec t i on a de tec t i on b i t s

R : _ _ fi _ = i _ _ = 34,47;
44 + 84 128
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L L' (no de1ay)

R‐ ‐ - @ ‐ ‐ ‐ ‐ ‐ > R ' (ID-delay)

L ‐ ‐ - ‐ ‐ ‐ ‐ L ' (20-de1ay)

WEE R' (BO-delay)

L' («J-delay)

EEEEE R" (SD-delay)

P' (GD-delay)

EDEEEEE Q' (7D-delay)

Fig. 2-15,

CRCC
GENERATOR

Fig. 2-16.
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4) The INTERLEAVING process is as shown in fi g u r e 2 -15 .

"0" is t he INTERLEAVE DELAY“ and equals 16 words.

F i g u r e 2-16. shows the i n t e r l e a v i n g i n more d e t a i l .

6 -2 . The PCM-1600/-1610 format
_ ‐ _ ‐ _ ‐ ~ ‐ ‐ . _ ‐ _ ‐ ‐ _ ‑

1) The f o l l o w i n g t ab l e summarizes the main p o i n t s of t h i s f o rma t .

2 (CH-1 = l e f t , CH-2 = r i gh t )Number of channels

Number of b i t s 16 bits/word (pro channel)

Quantization l inear

D ig i ta l Code 2's complement

Sampling frequencies 44,056 kHz or 44,1 kHz

B i t transmission rate 3,5795 Mbit/sec or 3,5831 Mbit/sec

Video signal NTSC-‐standard
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2) A horizontaT pseudo-v ideo Tine s t o r e s 193 b i t s as shown in

3)

4

fi g u r e 2-17.

E r r o r ‐ c o r r e c t i o n and - de tec t ion words are added a s shown i n

t h e t a b l e below.

A b l o c k of 6 audio-data words (3 lef t -channeT words and 3

r igh t -channeT w o r d s ) is Tinked w i t h 3 PARITY words and 3 CRCC

words.

“ I n

The PARITY word Pn i s gene ra ted by the e c h u s i v e f u n c t i o n o f

Ln and Rn

Pn= Ln®Rn

The CRCC words Cn are generated by t h e poiynomiai

x16 ® x12® x5®1

F i a u r e 2 -18 . shows the INTERLEAVING of t h e d a t a .

The 105 L - d a t a - w o r d s , the 105 R - d a t a - w o r d s , t h e 105 P-data-words

and t h e 105 CRCC-words make 1 i n t e r Te a v e .

These 420 words are s to red i n 3 5 h o r i z o n t a ] Tines . A v i d e o - fi e l d

s t o r e s 7 in te r i eaves ( o r 245 d a t a - T i n e s ) .
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| - ‐ ‐ ‐ ‐ 1 INTERLEAVE ‐ ‐ ‐ ‐ ‐ ‐ » ‐ I

ulstHl‐‘I 2ndHl‐I U L] UI | I I - I I I34th HI I_§5th H_|

, . ____n__n__
Z The sampiing frequency is 44.1 kHz

when this date skew b i t is low.

EMPHASIS is on when th is date b i t is

F ig. 2-19.
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5) The REDUNDANCY of t h i s fo rmat is 50%, as a bas i c block (12

words) is composed of 6 audio-data words (3 X L, 3 X R) and 6

e r r o r - c o r r e c t i o n and - de t e c t i o n words ( 3 X P, 3 X CRCC).

6) The 129th b i t of each horizonta1 Tine is a SKEw-bit . The

skew-b i t o f the l s t and 2nd ho r i zon ta l 1 ines can be se t as

shown i n the t a b i e .

Skew-bit Skew-bit Sampiing
l s t H 2nd H frequency

0 0

0 1

1 0

1 1

The skew‐bits o f t he o the r ho r i zon ta i l i n e s are a iways "1 “

( h i g h ) .

Emphasis
on/off

This i s shown i n fi g u r e 2-19.
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